Alkali metal halide additives chelate with Pb2+ ions during film formation promoting homogeneous nucleation, which greatly enhances the power conversion efficiency (15.08%) and stability (over 50 days) of planar perovskite solar cells.
Zr-based porphyrin metal-organic framework (MOF-525) nanocrystals with a crystal size of about 140 nm are synthesized and incorporated into perovskite solar cells. The morphology and crystallinity of the perovskite thin film are enhanced since the micropores of MOF-525 allow the crystallization of perovskite to occur inside; this observation results in a higher cell efficiency of the obtained MOF/perovskite solar cell.
In this study, we have strategically designed and convergently synthesized two novel, symmetrical, and linear A-D-A-type π-conjugated donor molecules (TBDTCNR, TBDTCN), each containing a planar electron-rich 2-octylthiene-5-yl-substituted benzodithiophene (TBDT) unit as the core, flanked by octylthiophene units and end-capped with electron-deficient cyanoacetate (CNR) or dicyanovinyl (CN) units. We thoroughly characterized both of these materials and investigated the effects of the end groups (CNR, CN) on their optical, electrochemical, morphological, and photovoltaic properties. We then fabricated solution-processed bulk heterojunction organic solar cells incorporating TBDTCNR and TBDTCN. Among our tested devices, the one containing TBDTCNR and [6,6]-phenyl-C61-butyric acid methyl ester in a 1:0.40 ratio (w/w) exhibited the highest power conversion efficiency (5.42%) with a short-circuit current density (Jsc) of 9.08 mA cm(-2), an open circuit voltage (Voc) of 0.90 V, and an impressive fill factor (FF) of 0.66 under AM 1.5G irradiation (100 mW cm(-2)). The FFs of these solution-processed small-molecule organic solar cells (SMOSCs) are outstanding when compared with those recently reported for benzodithiophene (BDT)-based SMOSCs, because of the high crystallinity and excellent stacking properties of the TBDT-based compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.