The one-step catalytic stamp pattern transfer process is described for producing arrays of hierarchical nanoparticle assemblies. The method simply combines in situ nanoparticle synthesis triggered by free residual Si−H groups on PDMS stamps and the lift-off pattern transfer technique. No additional nanoparticle synthesis procedure is required before the pattern transfer process. Exquisitely uniform and precisely spaced hierarchical nanoparticle assemblies with designed geometry can be rapidly produced using the catalytic stamp pattern transfer process. Sequential catalytic stamp pattern transfer also is described to generate multilayered, hierarchical nanoparticle assemblies with various geometries. The hierarchical nanoparticle assemblies catalytically transferred onto the surface are not just nanoparticles but nanoparticle− polydimethylsiloxane residue composites. The in situ-synthesized nanoparticles retain optical properties. The hierarchical nanoparticle assemblies with precisely controlled geometry further show potential in the application of surface-enhanced Raman scattering. The capability of one-step catalytic stamp pattern transfer allows the scalable and reproducible fabrication of welldefined hierarchical nanoparticle assemblies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.