Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel and pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers. To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. .
Purpose Selinexor, a selective inhibitor of XPO1, is currently being tested as single agent in clinical trials in acute myeloid leukemia (AML). However, considering the molecular complexity of AML, it is unlikely that AML can be cured with monotherapy. Therefore we asked whether adding already established effective drugs such as Topoisomerase (Topo) II inhibitors to selinexor will enhance its anti-leukemic effects in AML. Experimental Design The efficacy of combinatorial drug treatment using Topo II inhibitors (idarubicin, daunorubicin, mitoxantrone, etoposide) and selinexor was evaluated in established cellular and animal models of AML. Results Concomitant treatment with selinexor and Topo II inhibitors resulted in therapeutic synergy in AML cell lines and patient samples. Using a xenograft MV4-11 AML mouse model, we show that treatment with selinexor and idarubicin significantly prolongs survival of leukemic mice compared to each single therapy. Conclusions Aberrant nuclear export and cytoplasmic localization of Topo IIα has been identified as one of the mechanisms leading to drug resistance in cancer. Here, we show that in a subset of AML patients that express cytoplasmic Topo IIα, selinexor treatment results in nuclear retention of Topo IIα protein, resulting in increased sensitivity to idarubicin. Selinexor treatment of AML cells resulted in a c-MYC dependent reduction of DNA damage repair genes (Rad51 and Chk1) mRNA and protein expression, and subsequent inhibition of homologous recombination repair and increased sensitivity to Topo II inhibitors. The preclinical data reported here support further clinical studies using selinexor and Topo II inhibitors in combination to treat AML.
Key Points• Inhibition of HDAC reverses epigenetic silencing to upregulate miRs that target BTK and suppress its downstream prosurvival signaling.• We identified a rationale for the dual targeting of BTK when combined with ibrutinib and a strategy to eliminate the C481S-mutant BTK clone.Bruton's tyrosine kinase (BTK) is a critical mediator of survival in B-cell neoplasms. Although BTK inhibitors have transformed therapy in chronic lymphocytic leukemia (CLL), patients with high-risk genetics are at risk for relapse and have a poor prognosis. Identification of novel therapeutic strategies for this group of patients is an urgent unmet clinical need, and therapies that target BTK via alternative mechanisms may fill this niche. Herein, we identify a set of microRNAs (miRs) that target BTK in primary CLL cells and show that the histone deacetylase (HDAC) repressor complex is recruited to these miR promoters to silence their expression. Targeting the HDACs by using either RNA interference against HDAC1 in CLL or a small molecule inhibitor (HDACi) in CLL and mantle cell lymphoma restored the expression of the BTK-targeting miRs with loss of BTK protein and downstream signaling and consequent cell death. We have also made the novel and clinically relevant discovery that inhibition of HDAC induces the BTK-targeting miRs in ibrutinib-sensitive and resistant CLL to effectively reduce both wild-type and C481S-mutant BTK. This finding identifies a novel strategy that may be promising as a therapeutic modality to eliminate the C481S-mutant BTK clone that drives resistance to ibrutinib and provides the rationale for a combination strategy that includes ibrutinib to dually target BTK to suppress its prosurvival signaling. (Blood. 2016;128(26):3101-3112)
Key Points• KPT-9274, via its protein target NAMPT, diminishes NAD 1 levels and cellular respiration, leading to cell death.• Orally bioavailable KPT-9274 exhibits targetspecific activity in cell lines and patientderived xenograft models of AML. Treatment options for acute myeloid leukemia (AML) remain extremely limited and associated with significant toxicity. Nicotinamide phosphoribosyltransferase (NAMPT) is involved in the generation of NAD 1 and a potential therapeutic target in AML. We evaluated the effect of KPT-9274, a p21-activated kinase 4/NAMPT inhibitor that possesses a unique NAMPT-binding profile based on in silico modeling compared with earlier compounds pursued against this target. KPT-9274 elicited loss of mitochondrial respiration and glycolysis and induced apoptosis in AML subtypes independent of mutations and genomic abnormalities. These actions occurred mainly through the depletion of NAD 1 , whereas genetic knockdown of p21-activated kinase 4 did not induce cytotoxicity in AML cell lines or influence the cytotoxic effect of KPT-9274. KPT-9274 exposure reduced colony formation, increased blast differentiation, and diminished the frequency of leukemia-initiating cells from primary AML samples; KPT-9274 was minimally cytotoxic toward normal hematopoietic or immune cells. In addition, KPT-9274 improved overall survival in vivo in 2 different mouse models of AML and reduced tumor development in a patient-derived xenograft model of AML.Overall, KPT-9274 exhibited broad preclinical activity across a variety of AML subtypes and warrants further investigation as a potential therapeutic agent for AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.