The Arctic is warming at almost four times the global rate. An estimated sixty percent of greenhouse‐gas‐induced Arctic warming has been offset by anthropogenic aerosols, but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur isotope measurements in a Greenland ice core show that passive volcanic degassing contributes up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state‐of‐the‐art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated by up to a factor of three, possibly because many volcanic inventories do not include hydrogen sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m−2), suggesting that underestimating passive volcanic sulfur emissions has significant implications for anthropogenic‐induced Arctic climate change.
Anthropogenic sulfate aerosols are estimated to have offset sixty percent of greenhouse-gas-induced warming in the Arctic, a region warming four times faster than the rest of the world. However, sulfate radiative forcing estimates remain uncertain because the relative contributions from anthropogenic versus natural sources to total sulfate aerosols are unknown. Here we measure sulfur isotopes of sulfate in a Summit, Greenland ice core from 1850 to 2006 CE to quantify the contribution of anthropogenic sulfur emissions to ice core sulfate. We use a Keeling Plot to determine the anthropogenic sulfur isotopic signature (δ34Santhro = +2.9 ± 0.3 ‰), and compare this result to a compilation of sulfur isotope measurements of oil and coal. Using δ34Santhro, we quantify anthropogenic sulfate concentration separated from natural sulfate. Anthropogenic sulfate concentration increases to 68 ± 7% of non-sea-salt sulfate (65.1 ± 20.2 µg kg-1) during peak anthropogenic emissions from 1960 to 1990 and decreases to 45 ± 11% of non-sea-salt sulfate (25.4 ± 12.8 µg kg-1) from 1996 to 2006. These observations provide the first long-term record of anthropogenic sulfate distinguished from natural sources (e.g., volcanoes, dimethyl sulfide), and can be used to evaluate model characterization of anthropogenic sulfate aerosol fraction and radiative forcing over the industrial era.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.