The effects of coupling agents on the mechanical, morphological, and water sorption properties of luffa fiber (LF)/polypropylene(PP) composites were studied. In order to enhance the interfacial interactions between the PP matrix and the luffa fiber, three different types of coupling agents, (3-aminopropyl)-triethoxysilane (AS), 3-(trimethoxysilyl)-1-propanethiol (MS), and maleic anhydride grafted polypropylene (MAPP) were used. The PP composites containing 2-15 wt% of LF were prepared in a torque rheometer. The tensile properties of the untreated and treated composites were determined as a function of filler loading. Tensile strength and Young's modulus increased with employment of the coupling agents accompanied by a decrease in water absorption with treatment due to the better adhesion between the fiber and the matrix. The maximum improvement in the mechanical properties was obtained for the MS treated LF composites. The interfacial interactions improved the filler compatibility, mechanical properties, and water resistance of composites. The improvement in the interfacial interaction was also confirmed by the Pukanszky model. Good agreement was obtained between experimental data and the model prediction. Morphological studies demonstrated that better adhesion between the fiber and the matrix was achieved especially for the MS and AS treated LF composites. Atomic force microscope (AFM) studies also showed that the surface roughness of LFs decreased with the employment of silane-coupling agents. q
In this study, mechanical and morphological properties of composites made up of recycled highdensity polyethylene (HDPE) filled with calcium carbonate and fly ash (FA) were studied. Interfacial interactions were modified to improve the filler compatibility and mechanical properties of the composites by surface treatment of the FA filler with 3-amino propyl triethoxy silane. The composites were prepared by using a Thermo Haake Rheomixer. Effect of filler loading and treatment of FA with silane coupling agent on mechanical and morphological properties were investigated and it was found that silane treatment indicated significant improvements on the mechanical properties of the HDPE-FA composites. The improvement with silane treatment of FA was also confirmed by applying the Pukanszky model. Scanning electron microscopy on the fracture surface of composites had given direct evidence of better interfacial adhesion via silane treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.