This study was conducted to investigate immunological components of somatic gene therapy for primary glioblastoma multiforme (GBM) in adults. It involved 13 patients treated by surgical resection of tumor with subsequent radiation therapy. Seven of them received additional herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) gene therapy by direct intracerebral injection of retrovirus (RV) vector producing cells (VPC) during tumor surgery and subsequent systemic administration of GCV. Peripheral blood for FACS immunophenotyping, isolation of peripheral mononuclear cells (PMNC), and serum ELISA assays for IL-12 and soluble Fas ligand (sFasL) was collected daily during the first 4 post-operative weeks. Tumor specimens were obtained at primary or recurrent surgery and at autopsy. Tumors from gene therapy patients showed varying degrees of peritumoral necrosis around the former tumor resection cavity. Numbers of tumor-infiltrating lymphocytes found
Interleukin-15 (IL-15) is a potent T-cell stimulating factor, which has recently been used for pre-clinical in vivo immunotherapy. Here, the IL-15 effect on CD3-stimulated peripheral human T cells was investigated. IL-15 induced a significant T-cell proliferation and upregulated CD25 expression. IL-15 significantly enhanced T-cell production of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-10. Between 10- and 100-fold greater concentrations of IL-15 were necessary to reach a biological effect equivalent to that of IL-2. Blockade of IL-2 binding to the high-affinity IL-2 receptor did not affect the IL-15 effects, suggesting that IL-15 did not act by inducing endogenous IL-2. Exogenously administered IL-10 significantly reduced the IL-15 and IL-2–mediated IFN-γ and TNF-α production, whereas T-cell proliferation and CD25 expression were not affected. The inhibitory effects of exogenously administered IL-10 on T-cell cytokine production appeared indirect, and are likely secondary to decreased IL-12 production by accessory cells. Inhibition of endogenous IL-10 binding to the IL-10 receptor significantly increased IFN-γ and TNF-α release from T cells. These data suggest that endogenous IL-10 can regulate activated T-cell production of IFN-γ and TNF-α via a paracrine negative feedback loop. The observations of this study could be of relevance for the therapeutic use of IL-15 in vivo.
Previously we demonstrated that endogenously produced Interleukin (IL-)10 suppressed the production of tumor necrosis factor-alpha (TNF-alpha) in CD3 activated T-cells via down-regulation of paracrine IL-12 secretion from APC. Here we investigated the effect of endogenous IL-10 on TNF-alpha production in purified lipopolysaccharide (LPS) stimulated monocytes and its mechanism. Similarly to its effects on T-cells, IL-10 inhibited monocyte TNF-alpha production by about half. Unlike in T-cells, however, this effect was not mediated via IL-12. While blockade of endogenous IL-10 binding to the IL-10 receptor enhanced the autocrine production of TNF-alpha, IL-12 and IL-1 beta, the neutralization of IL-12 or IL-1 beta did not affect the IL-10 effects on TNF-alpha production. This suggests that despite its inhibitory effects on IL-12 and IL-1 beta, which is quite similarly observed in T-cells, in purified monocytes IL-10 does not effect its TNF-alpha suppression by this mechanism. These findings indicate that IL-10 regulates production of pro-inflammatory cytokines by distinct mechanisms in different cells and tissues. Our study thus adds to the appreciation of the complex cytokine regulation of the immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.