Soil contamination with heavy metals has become a worldwide problem, leading to losses in agricultural yield and hazardous human health effects as they enter the food chain. The present investigation was undertaken to examine the influence of cadmium (Cd2+) on the wheat (Triticum aestivum L.) plant. Cd2+ accumulation and distribution in 3-wk-old seedlings grown in nutrient medium containing varying concentrations of Cd2+ (control, 0.25, 0.50, 1.0, 2.5, and 5.0 mg/L) was monitored. The effect of varying Cd2+ concentrations up to 21 d on biomass productivity, plant growth, photosynthetic pigments, protein, amino acids, starch, soluble sugars, and essential nutrients uptake was studied in detail to explore the level up to which the plant can withstand the stress of heavy metal. Plants treated with 0.5, 1.0, 2.5, and 5.0 mg/L Cd2+ showed symptoms of heavy-metal toxicity as observed by various morphological parameters which were recorded with the growth of plants. The root, shoot-leaf length and the root, shoot-leaf biomass progressively decreased with increasing Cd2+ concentration in the nutrient medium. Cd2+ uptake and accumulation was found to be maximum during the initial growth period. Cd2+ also interfered with the nutrients uptake, especially calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe2+), zinc (Zn2+), and manganese (Mn2+) from the growth medium. Growth reduction and altered levels of major biochemical constituents such as chlorophyll, protein, free amino acids, starch, and soluble sugars that play a major role in plant metabolism were observed in response to varying concentrations of Cd2+ in the nutrient medium. In the present study, the effects of Cd2+ on growth, biomass productivity, mineral nutrients, chlorophyll biosynthesis, protein, free amino acid, starch, and soluble sugars in wheat plants was estimated to establish an overall picture of the Cd2+ toxicity at structural and functional levels.
A green house study was conducted on the effect of P and Zn on nodulation and N fixation in chickpea (Cicer arietinum L.) in a loamy sand (Typic Torripsamments) using treatment combinations of five levels of P (0, 25, 50, 100 and 250 ppm), and six levels of Zn (0, 5, 10, 20, 40 and 100 ppm). The number, dry matter and leghaemoglobin content of nodules, and amount of N fixed generally increased with Zn alone upto 19 ppm and P alone upto 50 ppm, and decreased with their higher levels. Application of 25 to 50 ppm P and 5 to 10 ppm Zn counteracted to a greater extent the adverse effect of 40 and 100 ppm Zn, and 250 ppm P, resp. Maximum nodulation and N fixation (91 to 145~ over zero P and Zn, at maturity) was recorded with 25 to 50 ppm P applied along with 5 to 10 ppm Zn. At 64 days, depletion in soil-N was noted, particularly when P was applied, whereas at maturity there was a gain in soil~N, ranging from 10.5 to 44.5 kg/2 x 106 kg soil depending upon P and Zn treatments. The increase in nodulation and N fixation with balanced P and Zn nutrition might be attributed to an increase in leghaernoglobin, and K and Fe concentration in nodules, and increased plant growth, resulting into enhanced activity of N fixing organisms. The results showed that balanced P and Zn nutrition is essential not only for plant growth but also for maximum activity of Rhizobium for N fixation.
Environmental and industrial pollution along with increase in ground level UV-B radiation, because of stratospheric ozone depletion, present multiple stresses, which may affect crop photosynthesis and productivity. The present study was undertaken to see interactive effects of heavy metal contamination (Cd(2+)) and UV-B exposure on essential nutrient (Ca(2+), Mg(2+), K(+)) uptake, biomass, and chlorophyll content in mustard (Brassica campestris L.) seedlings. Plants grown in 0.5, 1.0, 2.5, and 5.0 mg L(-1) Cd(2+) supplemented medium were exposed to UV-B for 30 min (0.4 mW cm(-2)) per day. The interactive effect of two stresses measured after 5 and 10 days showed an overall decline in biomass. Under dual stress (5 mg Cd(2+) L(-1)) significant (P < 0.001) decrease in chlorophyll a (43%), chlorophyll b (23%), and carotenoid (53%) was observed. Ca(2+) uptake was reduced by 51% in roots under high doses of Cd(2+) (5 mg L(-1)) and simultaneous exposure to 0.4 mW cm(-2) UV-B for 10 days. Mg(2+) content was reduced by 48% and K(+) by 62% under similar exposure conditions. Decline in nutrient uptake in Brassica campestris L. seedlings was observed both in root and shoot leaf in the initial growth period under controlled lab conditions. Cadmium ion (Cd(2+)) uptake was significantly enhanced by 33% (P < 0.001) in the presence of UV-B. The findings are significant as multiple stress conditions prevalent in the environment play an important role during the early growth period, a period critical for crop yield.
Miraculin-like proteins, belonging to the Kunitz superfamily, are natural plant defense agents against pests and predators, and therefore are potential biopesticides for incorporation into pest-resistant crops. Here, a miraculin-like protein from Murraya koenigii was assessed for its in vitro and in vivo effects against two polyphagous lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura. M. koenigii miraculin-like protein (MKMLP) inhibited the trypsin-like activity and total protease activity of H. armigera gut proteinases (HGP) by 78.5 and 40%, respectively, and S.litura gut proteinases (SGP) by 81 and 48%, respectively. The inhibitor was stable and actively inhibited the proteolysis of both HGP and SGP enzymes for up to 72 h. Incorporation of MKMLP into artificial diet adversely affected the growth and development of pests in a dose-dependent manner. After 10 days of feeding on diets containing 200 µM MKMLP, larval weight was reduced to 69 and 44.8% and larval mortality was increased to 40 and 43.3% for H. armigera and S litura, respectively. The LC(50) of MKMLP was 0.34 and 0.22% of the diet for H.armigera and S. litura, respectively. These results demonstrate the efficacy of MKMLP as a potential plant defense agent against H. armigera and S. litura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.