MCF-7 human breast cancer cells propagated in vitro were treated with adenosine derivatives added to the culture medium. The effects on cell proliferation, glycolysis, and glutaminolysis were investigated. Of all adenosine derivatives tested, AMP was the most efficient inhibitor of cell proliferation. In AMP-treated cells, DNA synthesis decreased, whereas RNA and protein syntheses rose normally with time. In terms of carbohydrate metabolism, lactate production from glucose was drastically reduced; therefore, most of lactate produced must have been derived from glutamine. Increases in the enzyme activities involved in glutamate degradation and in the malate-aspartate shuttle were observed. In contrast, actual glycolytic flux rates declined, whereas key glycolytic enzyme activities increased. Metabolites such as fructose 1,6-bisphosphate and pyruvate accumulated in AMP-arrested cells. Based on the lowered NAD level in the AMP-treated cells, lactate dehydrogenase, but not malate dehydrogenase, was impaired; thereby the whole of glycolysis was inhibited. In compensation, glutamine catabolism was increased. NAD concentrations fell drastically because of the known inhibition of P-ribose-PP synthesis through heightened intracellular AMP levels. A hypothetical metabolic scheme to explain these results and to show how extracellular AMP may influence carbohydrate metabolism and cell proliferation is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.