We use rigorous group-theoretic techniques and molecular dynamics to investigate the connection between structural symmetry and ionic conductivity in the garnet family of solid Li-ion electrolytes. We identify new ordered phases and order-disorder phase transitions that are relevant for conductivity optimization. Ionic transport in this materials family is controlled by the frustration of the Li sublattice caused by incommensurability with the host structure at non-integer Li concentrations, while ordered phases explain regions of sharply lower conductivity. Disorder is therefore predicted to be optimal for ionic transport in this and other conductor families with strong Li interaction.
This paper considers fracture strength, fracture origins, and hydrothermal degradation of 3Y‐TZP with grain sizes in the range of 110–480 nm. Biaxial fracture strength testing was used to show that the fracture strength increases with grain size and is governed by the concurrent change in fracture toughness. Hydrothermal degradation was studied by means of fractography, Raman microscopy and its effect on fracture strength. Up to 200 nm grain size, hydrothermal degradation of strength is limited. Larger grain sizes exhibit either premature failure or an increase in strength. A surface transformation zone was found to be responsible for both phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.