In the wake of the redefinition of the kilogram, the last unit of the International System of Units (SI) that is still based on a man-made artefact, discussions were launched on the necessity of redefining other units, amongst other the unit mole. Since 1971 the mole is defined as the
amount of substance of a system that contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. The symbol of the unit is 'mol'. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified
groups of such particles. The definition is based on the pre-existing choice to set the relative atomic mass of carbon 12 equal to 12 exactly. In the proposed new definition the mole is the amount of substance containing exactly 6.022 141 79 × 1023 atoms or molecules, ions,
electrons, other particles, or specified groups of such particles, i.e. the Avogardo constant would have a fixed value without an uncertainty. This contribution critically examines the submitted arguments to justify the proposed redefinition of the unit mole by 2011 for their persuasive
power to change a scientific and cultural good such as a unit of measurement. As shown, there are no convincing scientific arguments for a redefinition of the mole that stand a closer examination. The current definition is well understood, established in science and technology for almost 50
years and is still up to date.
The International System of Units (SI) follows a concept that goes back to Maxwell. At that time, a logic sound foundation of mathematics was not yet available. This has lead to concepts and terms that are contradictory and in conflict with today's standard mathematical concepts. The inconsistencies that have evolved in metrology due to the lack of appropriate notions are pointed out. This is most important, as the metrology is a field that is internationally well organized under the umbrella of the Meter Convention, an international treaty for acting on all matters relating to units of measurement. Committees and working groups under the Meter Convention have a leading role in the elaboration of important metrological guides, among others the International Vocabulary of Metrology. Therefore, it is highly desirable that their publications use well-founded concepts and terminology. It is consensus that it is desirable to find a system of units on invariant properties of nature and not on human artifacts, e.g., the prototype of the kilogram. However, the current proposals to improve that are in conflict with standard scientific concepts. It is shown in the paper how these inconsistencies can be avoided. The argumentation is based on the interpretation of numbers developed by mathematicians like Cantor, Dedekind, Peano, and others that have led the logic foundation of mathematics with set and number theory. This foundation excludes dogmas that have been forwarded in the last century under the umbrella of the Meter Convention.
Comparisons of the Josephson array voltage standard of the Bureau International des Poids et Mesures (BIPM) were made with those of the Swiss Federal Office of Metrology (OFM), Wabern, Switzerland, in November 1992 and of the Nederlands Meetinstituut-Van Swinden Laboratorium (NMi), Delft, the Netherlands, in March 1993. Direct and indirect comparison results indicate agreement between the voltage standards to within 1 nV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.