We report the preparation and characterization of a new type of intrinsic photoaffinity labeling probe, on the basis of the incorporation of a photolabile nitrotryptophan into a biologically relevant domain of a peptide. The model system used was the pancreatic cholecystokinin (CCK) receptor, previously affinity labeled with a variety of probes. Those studies have suggested that an Mr = 85,000-95,000 protein is more likely to be labeled as the site of covalent attachment approaches the receptor-binding domain of this hormone. Indeed, CCK has a Trp in the center of its receptor-binding region, and replacement of that residue with 6-nitrotryptophan resulted in a photolabile probe which affinity labeled the same Mr = 85,000-95,000 pancreatic membrane protein. This probe, 125I-D-Tyr-Gly-[(Nle28,31,6-NO2-Trp30)CCK-26-33], was synthesized by solid-phase and solution techniques and characterized by mass spectrometry. Following oxidative iodination, it was purified on HPLC to 2000 Ci/mmol. Binding to pancreatic membranes was rapid, temperature dependent, reversible, saturable, and specific and was with high affinity (Kd = 3 nM). While its binding affinity was only 3-fold lower than that of native CCK-8, this probe was 70-fold less potent than native hormone in stimulating amylase secretion (EC50 = 1 nM) and equally efficacious to native hormone. Despite the slight decrease in affinity, this probe demonstrated a high relative efficiency of covalent labeling of the Mr = 85,000-95,000 protein. This confirms that the Mr = 85,000-95,000 protein represents the hormone-binding subunit of the CCK receptor and demonstrates the utility of this type of photoaffinity labeling probe.(ABSTRACT TRUNCATED AT 250 WORDS)
To further define the structure of the pancreatic cholecystokinin (CCK) receptor and the topographical distance relationships between its subunits, we developed a series of monofunctional photoaffinity probes in which a fixed receptor-binding domain was separated from a photolabile nitrophenylacetamido group by defined lengths of a flexible spacer. The well-characterized CCK receptor radioligand 125I-D-Tyr-Gly-[(Nle28,31)CCK-26-33] provided the receptor-binding component of the probes, while the polymer poly(ethylene glycol) (2, 4, 7, and 10 monomer units long) was used as the spacer. The patterns of affinity labeling of rat pancreatic plasma membranes were examined as a function of spacer length. This ranged from 7.3 to 16.2 A, as calculated by root-mean-square end-to-end distances and validated experimentally by time-resolved fluorescence resonance energy transfer measurements. All probes in the series specifically labeled the Mr = 85,000-95,000 glycoprotein with Mr = 42,000 core, which has been proposed to contain the hormone recognition site. In addition, when the spacer length reached 16.2 A, membrane proteins of Mr = 80,000 and Mr = 40,000 were specifically labeled. The product of endo-beta-N-acetylglucosaminidase F digestion of the Mr = 80,000 protein was Mr = 65,000, similar to a protein previously identified in affinity labeling experiments using a CCK-33-based probe. These observations are consistent with the Mr = 85,000-95,000 pancreatic protein representing the hormone-binding subunit of the CCK receptor, while proteins of Mr = 80,000 and Mr = 40,000 may represent noncovalently associated subunits sited within 16.2 A of the binding domain.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.