Inelastic scattering from12 C has been measured at the extremely forward angles including 0• using 386 MeV α particles to study the α-cluster states around Ex ∼ 10 MeV, especially the 2 + state predicted by the α-cluster model. We have analyzed the (α,α ′ ) cross-section data using both the peak-fitting and the multipole decomposition techniques. A 2 + state at Ex = 9.84 ± 0.06 MeV with a width of 1.01 ± 0.15 MeV is found to be submerged in the broad 0 + state at Ex = 9.93 ± 0.03 MeV with a width of 2.71 ± 0.08 MeV. This 2 + state may be interpreted as the 2 + excitation of the Hoyle state and the α-condensate state.
The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei.The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.
The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112-124) with inelastic scattering of 400-MeV alpha particles in the angular range 0 degrees -8.5 degrees . We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208Pb and 90Zr very well. From the GMR data, a value of Ktau = -550 +/- 100 MeV is obtained for the asymmetry term in the nuclear incompressibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.