Two processing methods were successfully combined to obtain Ag‐modified calcium phosphate scaffolds with antibacterial properties: (i) hydrothermal conversion of macroporous biogenic carbonates and (ii) vapor transport sintering. Hydrothermal conversion of two precursor materials, i.e., coral skeletons and sea urchin spines, resulted in the pseudomorphic replacement of highly porous calcium carbonates by calcium phosphate scaffolds. Vapor transport sintering of these scaffolds within a reactive AgCl atmosphere facilitated near net‐shape processing accompanied by the condensation of finely dispersed Ag‐bearing particles over the scaffold's surface. Chemical and phase compositions were analyzed using WDXRF, XRD, and DRIFTS (FTIR), and the microstructure development was characterized by SEM and TEM imaging. The dissolution kinetics of Ag+ ions in aqueous solution was determined and growth inhibition experiments with Gram‐positive and Gram‐negative bacteria were performed to assess the antibacterial properties of Ag‐modified ceramics.
Abstract:The formation of the surface-near microstructure after a current interruption of CuCr contact materials in a vacuum interrupter is characterized by a fast heating and subsequently rapid solidification process. In the present article, we reveal and analyse the formation of two distinct microstructural regions that result from the heat, which is generated and dissipated during interruption. In the topmost region, local and global texture, as well as the resulting microstructure, indicate that both Cu and Cr were melted during rapid heating and solidification whereas in the region underneath, only Cu was melted and elongated Cu-grains solidified with the <001>-direction perpendicularly aligned to the surface. By analysing the lattice parameter of the Cu solid solution, a supersaturation of the solid solution with about 2.25 at % Cr was found independent if Cu was melted solely or together with the Cr. The according reduction of electrical conductivity in the topmost region subsequent to current interruption and the resulting heat distribution are discussed based on these experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.