The abrupt rise in local sea level due to storm tide caused by an approaching tropical cyclone could cause severe flooding and devastating influence to low-lying regions of a coastal city. Studies show that many empirical offline modeling techniques are useful tools for storm tide simulation, e.g. the Artificial Neural Network (ANN). However, these techniques are non-adaptive and retraining is necessary when new data are available. The present study introduces an adaptive empirical model for improvement. It is a dynamic linear regression model with the harmonic tidal prediction, wind speed, wind direction and atmospheric pressure as the model input parameters. Application of the model to simulate the storm tide variation of forty tropical cyclone cases in Macau gives values of the root-mean-squared error and the coefficient of determination ranging between 0.08~0.20m and 0.82~0.98, respectively. In addition, the proposed model could capture the storm tide maxima of the seventeen flooding cases among the forty with a root-mean-squared error of 0.15m. Simulation of the corresponding peak arrival for the flooding cases is mostly within one hour of the actual one and at most two hours. Therefore, the proposed adaptive model is a promising tool for storm tide simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.