This paper analyzes the global asymptotic stability of a class of neural networks with time delay in the leakage term and time-varying delays under impulsive perturbations. Here the time-varying delays are assumed to be piecewise. In this method, the interval of the variation is divided into two subintervals by its central point. By developing a new Lyapunov-Krasovskii functional and checking its variation in between the two subintervals, respectively, and then we present some sufficient conditions to guarantee the global asymptotic stability of the equilibrium point for the considered neural network. The proposed results which do not require the boundedness, differentiability and monotonicity of the activation functions, can be easily verified via the linear matrix inequality (LMI) control toolbox in MATLAB. Finally, a numerical example and its simulation are given to show the conditions obtained are new and less conservative than some existing ones in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.