In dairy cattle, the widespread use of artificial insemination has resulted in increased selection intensity, which has led to spectacular increase in productivity. However, cow fertility has concomitantly severely declined. It is generally assumed that this reduction is primarily due to the negative energy balance of high-producing cows at the peak of lactation. We herein describe the fine-mapping of a major fertility QTL in Nordic Red cattle, and identify a 660-kb deletion encompassing four genes as the causative variant. We show that the deletion is a recessive embryonically lethal mutation. This probably results from the loss of RNASEH2B, which is known to cause embryonic death in mice. Despite its dramatic effect on fertility, 13%, 23% and 32% of the animals carry the deletion in Danish, Swedish and Finnish Red Cattle, respectively. To explain this, we searched for favorable effects on other traits and found that the deletion has strong positive effects on milk yield. This study demonstrates that embryonic lethal mutations account for a non-negligible fraction of the decline in fertility of domestic cattle, and that associated positive effects on milk yield may account for part of the negative genetic correlation. Our study adds to the evidence that structural variants contribute to animal phenotypic variation, and that balancing selection might be more common in livestock species than previously appreciated.
BackgroundA single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16 traits in the Nordic Holstein population.MethodsThe data consisted of de-regressed proofs (DRP) for 5 214 genotyped and 9 374 non-genotyped bulls. The bulls were divided into a training and a validation population by birth date, October 1, 2001. Five approaches for genomic prediction were used: 1) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted for the difference of scale between the genomic and the pedigree relationship matrices. A set of weights on the pedigree relationship matrix (ranging from 0.05 to 0.40) was used to build the combined relationship matrix in the single-step blending method and the GBLUP method with a polygenetic effect.ResultsAveraged over the 16 traits, reliabilities of genomic breeding values predicted using the GBLUP method with a polygenic effect (relative weight of 0.20) were 0.3% higher than reliabilities from the simple GBLUP method (without a polygenic effect). The adjusted single-step blending and original single-step blending methods (relative weight of 0.20) had average reliabilities that were 2.1% and 1.8% higher than the simple GBLUP method, respectively. In addition, the GBLUP method with a polygenic effect led to less bias of genomic predictions than the simple GBLUP method, and both single-step blending methods yielded less bias of predictions than all GBLUP methods.ConclusionsThe single-step blending method is an appealing approach for practical genomic prediction in dairy cattle. Genomic prediction from the single-step blending method can be improved by adjusting the scale of the genomic relationship matrix.
This study investigated the accuracy of direct genomic breeding values (DGV) using a genomic BLUP model, genomic enhanced breeding values (GEBV) using a one-step blending approach, and GEBV using a selection index blending approach for 15 traits of Nordic Red Cattle. The data comprised 6,631 bulls of which 4,408 bulls were genotyped using Illumina Bovine SNP50 BeadChip (Illumina, San Diego, CA). To validate reliability of genomic predictions, about 20% of the youngest genotyped bulls were taken as test data set. Deregressed proofs (DRP) were used as response variables for genomic predictions. Reliabilities of genomic predictions in the validation analyses were measured as squared correlations between DRP and genomic predictions corrected for reliability of DRP, based on the bulls in the test data sets. A set of weighting (scaling) factors was used to construct the combined relationship matrix among genotyped and nongenotyped bulls for one-step blending, and to scale DGV and its expected reliability in the selection index blending. Weighting (scaling) factors had a small influence on reliabilities of GEBV, but a large influence on the variation of GEBV. Based on the validation analyses, averaged over the 15 traits, the reliability of DGV for bulls without daughter records was 11.0 percentage points higher than the reliability of conventional pedigree index. Further gain of 0.9 percentage points was achieved by combining information from conventional pedigree index using the selection index blending, and gain of 1.3 percentage points was achieved by combining information of genotyped and nongenotyped bulls simultaneously applying the one-step blending. These results indicate that genomic selection can greatly improve the accuracy of preselection for young bulls in Nordic Red population, and the one-step blending approach is a good alternative to predict GEBV in practical genetic evaluation program.
The current study evaluates reliability of genomic predictions in selection candidates using multi-trait random regression model, which accounts for interactions between marker effects and breed of origin in the Nordic Red dairy cattle (RDC). The population structure of the RDC is admixed. Data consisted of individual animal breed proportions calculated from the full pedigree, deregressed proofs (DRP) of published estimated breeding values (EBV) for yield traits and genotypic data for 37,595 single nucleotide polymorphic markers. The analysed data included 3330 bulls in the reference population and 812 bulls that were used for validation. Direct genomic breeding values (DGV) were estimated using the model under study, which accounts for breed effects and also with GBLUP, which assume uniform population. Validation reliability was calculated as a coefficient of determination from weighted regression of DRP on DGV (rDRP,DGV 2), scaled by the mean reliability of DRP. Using the breed-specific model increased the reliability of DGV by 2 and 3% for milk and protein, respectively, when compared to homogeneous population GBLUP. The exception was for fat, where there was no gain in reliability. Estimated validation reliabilities were low for milk (0.32) and protein (0.32) and slightly higher (0.42) for fat.
This study investigated the improvement in genetic evaluation of fertility traits by using production traits as secondary traits (MILK = 305-d milk yield, FAT = 305-d fat yield, and PROT = 305-d protein yield). Data including 471,742 records from first lactations of Denmark Holstein cows, covering the years of inseminations during first lactations from 1995 to 2004, were analyzed. Six fertility traits (i.e., interval in days from calving to first insemination, calving interval, days open, interval in days from first to last insemination, numbers of inseminations per conception, and nonreturn rate within 56 d after first service) were analyzed using single- and multiple-trait sire models including 1 or 3 production traits. Model stability was evaluated by correlation between EBV from 2 sub-data sets (DATA(A) and DATA(B)). Model predictive ability was assessed by the correlation between EBV from training data (DATA(A) or DATA(B)) and daughter performance (yield deviation, defined as average of daughter-records adjusted for nongenetic effects) from test data (DATA(B) or DATA(A)) in a cross-validation procedure, and correlation between EBV obtained from the whole data set (DATA(T)) and from a reduced data set (DATA(C1), which only contained the first crop daughters) for proven bulls. In addition, the superiority of the models was evaluated by expected reliability of EBV, calculated from the prediction error variance of EBV. Based on these criteria, the models combining milk production traits showed better model stability and predictive ability than single-trait models for all the fertility traits, except for nonreturn rate within 56 d after first service. The stability and predictive ability for the model including MILK or PROT were similar to the model including all 3 milk production traits and better than the model including FAT. In addition, it was found that single-trait models underestimated genetic trend of fertility traits. These results suggested that genetic evaluation of fertility traits would be improved using a multiple-trait model including MILK or PROT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.