The diagnosis system presents to classify the Electroencephalogram (EEG) brain signal of patient to distinguish between normal and abnormal which are tumor and epilepsy with better classification accuracy. To design automated classification of EEG signals for the detection of normal and abnormal activities using Wavelet transform and Artificial Neural Network (ANN) Classifier is considered. Here, the system uses the back propagation with feed forward for classification which follows the ANN classification with data set training. For training, the statistical principal features will be extracted with facilitate of data base samples. The test sample is going to be classified using ANN classifier parameters and its features. The system gives better performance accuracy for different test samples
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.