O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self‐consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10−7 to 5 × 10−3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long‐standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an ~30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low‐energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1–6) × 10−3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.
We have characterized the porosity of vapor-deposited amorphous solid water (ice) films deposited at 30-40 K using several complementary techniques such as quartz crystal microgravimetry, UV-visible interferometry, and infrared reflectance spectrometry in tandem with methane adsorption. The results, inferred from the gas adsorption isotherms, reveal the existence of microporosity in all vapor-deposited films condensed from both diffuse and collimated water vapor sources. Films deposited from a diffuse source show a step in the isotherms and much less adsorption at low pressures than films deposited from a collimated source with the difference increasing with film thickness. Ice films deposited from a collimated vapor source at 77 degrees incidence are mesoporous, in addition to having micropores. Remarkably, mesoporosity is retained upon warming to temperatures as high as 140 K where the ice crystallized. The binding energy distribution for methane adsorption in the micropores of ice films deposited from a collimated source peaks at approximately 0.083 eV for deposition at normal incidence and at approximately 0.077 eV for deposition at >45 degrees incidence. For microporous ice, the intensity of the infrared bands due to methane molecules on dangling OH bonds on pore surfaces increases linearly with methane uptake, up to saturation adsorption. This shows that the multilayer condensation of methane does not occur inside the micropores. Rather, filling of the core volume results from coating the pore walls with the first layer of methane, indicating pore widths below a few molecular diameters. For ice deposited at 77 degrees incidence, the increase in intensity of the dangling bond absorptions modified by methane adsorption departs from linearity at large uptakes.
Amorphous solid water (ASW) films grown by vapor deposition below 110 K develop negative surface voltages Vs with respect to the substrate. This polarization is due to a partial alignment of the water molecules during condensation. Kelvin probe measurements show that the magnitude of the surface potential, |Vs|, increases linearly with film thickness at a rate that decreases with increasing deposition temperature. |Vs| decreases with increasing deposition temperature and increasing incidence angle of the vapor source. After film growth, |Vs| decreases irreversibly by 80% when the ice film is heated to ∼30 K above the deposition temperature. The measurements of |Vs| as a function of film porosity indicate that polarization in ASW is governed by incompletely coordinated water molecules, dangling with unbalanced dipoles at the internal surface of the pores and weakly aligned by the anisotropic film-vacuum interface. This idea is supported by the strikingly similar behavior of |Vs| and the infrared absorption due to the most pliable, two-coordinated surface molecules with annealing temperature.
We have studied the compaction of vapor-deposited amorphous solid water by energetic ions at 40 K. The porosity was characterized by ultraviolet-visible spectroscopy, infrared spectroscopy, and methane adsorption/desorption. These three techniques provide different and complementary views of the structural changes in ice resulting from irradiation. We find that the decrease in internal surface area of the pores, signaled by infrared absorption by dangling bonds, precedes the decrease in the pore volume during irradiation. Our results imply that impacts from cosmic rays can cause compaction in the icy mantles of the interstellar grains, which can explain the absence of dangling bond features in the infrared spectrum of molecular clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.