Herein, we report progress toward the development of bioactive surfaces based on gamma-aminobutyric acid (GABA), a major neurotransmitter in the nervous system. Whereas immobilization techniques have focused largely on antibodies, enzymes, and receptors, to our knowledge, this is the first report of a prototype neurotransmitter-immobilized surface. Biosurfaces were assembled onto either mica or glass using passive adsorption of avidin and subsequent attachment of a derivatized form of GABA via a biotin-avidin affinity bond. Surface characterization of these prepared bimolecular surfaces was determined using atomic force microscopy in tapping mode. The data reveal that passive adsorption of avidin is uniformly dispersed and cluster densities can be controlled through the concentration of the avidin incubation solution. GABA tethered via biotin to these avidin surfaces displayed a unique surface topology; in addition, histograms of surface heights suggest two different types of molecular cluster populations. Functional assays were performed to test the biological activity of the synthesized GABA. Anti-GABA antibody directed to these bimolecular surfaces result in morphological topologies and histograms that indicate antibody-antigen binding. However, nonspecific anti-immunoglobulin G antibodies directed to these surfaces show low binding affinity. Taken together, the data support the idea that the synthesized surfaces are biofunctional.
Here we report progress toward the development of bioactive surfaces based on GABA, a major neurotransmitter in the nervous system. While immobilization techniques have focused largely on antibodies, enzymes, and receptors, to our knowledge, this is the first report of a prototype neurotransmitter-immobilized surface. Biosurfaces were assembled onto either mica or glass using passive adsorption of avidin and subsequent attachment OF a derivatized form of GABA via a biotin-avidin afiinity bond. Surface characterization was carried out using atomic force microscopy to visualize surface topology. The data reveal 1) passive adsorption of avidin is uniformly dispersed and cluster densities can be controlled through the concentration of the avidin incubation solution; and 2) GABA tethered via biotin to these avidin surfaces showed a homogenous distribution of the tethered neurotransmitter molecule onto glass and two different population distributions onto mica. Functional assays performed to test the biological activity of the synthesized GABA, direct sandwich ELISA, as well as comparison of AFM images of anti-GABA antibody incubation of these prepared GABA surfaces to control studies using anti-IgG antibody, together support the idea that these synthesized surfaces are biofunctional.
Here we report progress toward the development of bioactive surfaces based on GABA, a major neurotransmitter in the nervous system. While immobilization techniques have focused largely on antibodies, enzymes, and receptors, to our knowledge, this is the first report of a prototype neurotransmitter-immobilized surface. Biosurfaces were assembled onto either mica or glass using passive adsorption of avidin and subsequent attachmento fa derivatized form of GABA via a biotin-avidin aiffinity bond. Surface characterization was carried out using atomic force microscopy to visualize surface topology. The data reveal 1) passive adsorption of avidin is uniformly dispersed and cluster densities can bec ontrolled through thec oncentration of the avidin incubation solution 2) GABA tethered via biotin to these avidin surfaces showed a homogenous distribution of the tethered neurotransmitter molecule onto glass and two different population distributions onto mica. Functional assays performed to test the biological activity of the synthesized GABA, direct sandwich ELISA, as well as comparison of AFM images of anti-GABA antibody incubation of these prepared GABA surfaces to control studies using anti-IgG antibody, together support the idea that these synthesized surfaces are biofunctional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.