SnTe, a lead-free rock-salt analogue of PbTe, having valence band structure similar to PbTe, recently has attracted attention for thermoelectric heat to electricity generation. However, pristine SnTe is a poor thermoelectric material because of very high hole concentration resulting from intrinsic Sn vacancies, which give rise to low Seebeck coefficient and high electrical thermal conductivity. In this report, we show that SnTe can be optimized to be a high performance thermoelectric material for power generation by controlling the hole concentration and significantly improving the Seebeck coefficient. Mg (2−10 mol %) alloying in SnTe modulates its electronic band structure by increasing the band gap of SnTe and results in decrease in the energy separation between its light and heavy hole valence bands. Thus, solid solution alloying with Mg enhances the contribution of the heavy hole valence band, leading to significant improvement in the Seebeck coefficient in Mg alloyed SnTe, which in turn results in remarkable enhancement in power factor. Maximum thermoelectric figure of merit, ZT, of ∼1.2 is achieved at 860 K in the high quality crystalline ingot of p-type Sn 0.94 Mg 0.09 Te.
Understanding the basis of electronic transport and developing ideas to improve thermoelectric power factor are essential for production of efficient thermoelectric materials. Here, we report a significantly large thermoelectric power factor of ∼31.4 μW/cm·K at 856 K in Ag and In co-doped SnTe (i.e., SnAgInTe). This is the highest power factor so far reported for SnTe-based material, which arises from the synergistic effects of Ag and In on the electronic structure and the improved electrical transport properties of SnTe. In and Ag play different but complementary roles in modifying the valence band structure of SnTe. In-doping introduces resonance levels inside the valence bands, leading to a significant improvement in the Seebeck coefficient at room temperature. On the other hand, Ag-doping reduces the energy separation between light- and heavy-hole valence bands by widening the principal band gap, which also results in an improved Seebeck coefficient. Additionally, Ag-doping in SnTe enhances the p-type carrier mobility. Co-doping of In and Ag in SnTe yields synergistically enhanced Seebeck coefficient and power factor over a broad temperature range because of the synergy of the introduction of resonance states and convergence of valence bands, which have been confirmed by first-principles density functional theory-based electronic structure calculations. As a consequence, we have achieved an improved thermoelectric figure of merit, zT ≈ 1, in SnAgInTe at 856 K.
GeTe and its derivatives have recently attracted wide attention as promising thermoelectric materials. The principle challenge in optimizing the thermoelectric figure of merit, zT, is the low Seebeck coefficient (S) and high thermal conductivity of GeTe. Here, we report a high zT of $2.1 at 723 K in In and Bi codoped GeTe along with an extremely high TE conversion efficiency of $12.3% in a single-leg thermoelectric generator for the temperature difference of 445 K. In and Bi play a distinct but complementary role. In doping significantly enhances the S through the formation of resonance level, which is confirmed with first-principles density functional theory calculations and Pisarenko plot considering two valance band model. However, Bi doping markedly reduces the lattice thermal conductivity due to the formation of extensive solid solution point defects and domain variants. Moreover, a high value of Vickers microhardness ($200 H v , H v = kgf/mm 2 ) reveals excellent mechanical stability.
Complementary
and beneficial effects of Sb and Bi codoping in GeTe
are shown to generate high thermoelectric figure of merit, zT, of
1.8 at 725 K in Ge1‑x‑y
Bi
x
Sb
y
Te samples. Sb and Bi codoping in GeTe facilitates the valence
band convergence enhancing the Seebeck coefficient as supported by
density functional theoretical (DFT) calculations. Further, Sb and
Bi codoping in GeTe releases the rhombohedral strain and increases
its tendency to be cubic in structure, which ultimately enhances the
valence band degeneracy. At the same time, Bi forms nanoprecipitates
of size ∼5–20 nm in GeTe matrix and Sb doping increases
solid solution point defects greatly, which altogether scatter low-to
mid wavelength phonons and result in reduced lattice thermal conductivity
down to 0.5 W/mK in the 300–750 K range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.