Three different stirred bioreactors of 0.5 to 121 volume were used to scale up the production of a human monoclonal antibody. Inoculation density and stirrer speed were evaluated in batch cultures, whereas dilution rate and pH were optimized in chemostat cultures with respect to high specific antibody production rate and high antibody yield per time and reactor volume. The cell line used for the experiments was a heterohybridoma, producing immunoglobulin M (IgM) against lipopolysaccharide of Pseudomonas aeruginosa. Cells were cultured in spinner flasks of 500 ml liquid volume for adaptation to stirred culture conditions. Subsequently cells were transferred to the 1.5-l KLF 2000 bioreactor and to the 12-l NLF 22 bioreactor for pilot-scale cultures. Chemostat experiments were done in the 1.5-l KLF bioreactor. Cell density, viability, glucose and lactate and antibody concentration were measured during culture experiments. In batch cultures in all three stirred bioreactors, comparable maximal cell densities and specific growth rates were achieved. Chemostat experiments showed that at a pH of 6.9 and a dilution rate of 0.57 per day the specific antibody production rate was threefold higher than similar experiments done at pH 7.2 with a dilution rate of 0.36 per day. By optimizing pH and dilution rate in chemostat cultures the daily yield of human IgM increased nearly threefold from 6 to 16 mg/day and per litre of reactor volume. The yield per litre of medium increased twofold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.