The APOBEC family members are involved in diverse biological functions. APOBEC3G restricts the replication of human immunodeficiency virus (HIV), hepatitis B virus and retroelements by cytidine deamination on single-stranded DNA or by RNA binding1–4. Here we report the high-resolution crystal structure of the carboxy-terminal deaminase domain of APOBEC3G (APOBEC3G-CD2) purified from Escherichia coli. The APOBEC3G-CD2 structure has a five-stranded β-sheet core that is common to all known deaminase structures and closely resembles the structure of another APOBEC protein, APOBEC2 (ref. 5). A comparison of APOBEC3G-CD2 with other deaminase structures shows a structural conservation of the active-site loops that are directly involved in substrate binding. In the X-ray structure, these APOBEC3G active-site loops form a continuous ‘substrate groove’ around the active centre. The orientation of this putative substrate groove differs markedly (by 90 degrees) from the groove predicted by the NMR structure6. We have introduced mutations around the groove, and have identified residues involved in substrate specificity, single-stranded DNA binding and deaminase activity. These results provide a basis for understanding the underlying mechanisms of substrate specificity for the APOBEC family.
The Spo0F-Spo0B interaction appears to be a prototype for response regulator-histidine kinase interactions. The primary contact surface between these two proteins is formed by hydrophobic regions in both proteins. The Spo0F residues making up the hydrophobic patch are very similar in all response regulators suggesting that the binding is initiated through the same residues in all interacting response regulator-kinase pairs. The bulk of the interactions outside this patch are through nonconserved residues. Recognition specificity is proposed to arise from interactions of the nonconserved residues, especially the hypervariable residues of the beta4-alpha4 loop.
The lymphoid tyrosine phosphatase LYP, encoded by the PTPN22 gene, recently emerged as an important risk factor and drug target for human autoimmunity. Here we solved the structure of the catalytic domain of LYP, which revealed noticeable differences with previously published structures. The active center with a semi-closed conformation binds phosphate ion, which may represent an intermediate conformation after de-phosphorylation of the substrate but before release of the phosphate product. The structure also revealed an unusual disulfide bond formed between the catalytic Cys and one of the two Cys residues nearby, which is not observed in previously determined structures. Our structural and mutagenesis data suggest that the disulfide bond may play a role in protecting the enzyme from irreversible oxidation. Surprisingly, we found that the two non-catalytic Cys around the active center exert an opposite yin-yang regulation on the catalytic Cys activity. These detailed structure and functional characterizations have provided new insight into auto-regulatory mechanisms of LYP function.Regulating tyrosine phosphorylation level is a fundamental mechanism for numerous important aspects of eukaryote physiology, as well as human health and disease (1-3). Cellular tyrosine phosphorylation levels are regulated by the antagonistic activities of two classes of enzymes, the protein tyrosine kinases (PTKs) 1 and the protein tyrosine phosphatases (PTPs). Recent findings have led to the emerging recognition that PTPs play specific and even dominant roles in setting the levels of tyrosine phosphorylation in cells and in the regulation of many physiological processes (2-7). Disruption of the equilibrium maintained by PTPs and PTKs causes a range of human disease, including cancer, diabetes, and autoimmunity (8-16).A major class of PTPs, known as classical PTPs, include transmembrane PTPs and nonreceptor PTPs (NRPTP), which are then further sub-classified based on their sequence similarities and non-catalytic domain structural motifs (4,8). NRPTPs display various ‖ The coordinates and structure factors for the disulfide structure of PTPN22 (PDB ID: 3H2X) The importance of LYP in immune system regulation has been recently demonstrated by the finding that a human variant W620, caused by a single nucleotide polymorphism in PTPN22 at nucleotide 1858, leads to a significantly increased risk for autoimmune diseases including type-1 diabetes, rheumatoid arthritis and systemic lupus erythematosus (11,16,18,19). Since the autoimmune-predisposing LYP-W620 variant is a gain-of-function mutation and shows increased phosphatase activity (20), LYP is currently considered a promising drug target for autoimmunity. Elucidation of the structure and regulation of LYP is important in order to understand its mechanism of action in autoimmunity and to develop innovative approaches to the pharmacological inhibition of the enzyme for therapeutic purposes.One possible mechanism of regulating cysteine-based PTP activity is through oxidation of t...
The binding of von Willebrand factor (vWF) to the platelet receptor, glycoprotein (GP) Ib-IX-V complex, has a key role in the initiation of thrombus formation and is regulated by interactions with extracellular matrix components under the influence of hemodynamic forces. To a certain extent, these effects can be mimicked in vitro by two nonphysiologic modulators, ristocetin and botrocetin. The latter, isolated from the venom of the snake Bothrops jararaca, is a 31-kDa heterodimeric protein that forms a soluble complex with vWF. As an initial step toward understanding the mechanisms that regulate vWF function, we have solved the crystal structure of botrocetin at 1.8 A resolution. Botrocetin exhibits homology with other snake proteins, but contains only one metal binding site as compared to two in Factor IX binding protein and Factor IX/X binding protein and none in flavocetin. A distinctive feature of botrocetin is the presence of a negatively charged surface that may play a role in the association with the vWF A1 domain.
Hemoglobin A(2) (alpha(2)delta(2)) is an important hemoglobin variant which is a minor component (2-3%) in the circulating red blood cells, and its elevated concentration in beta-thalassemia is a useful clinical diagnostic. In beta-thalassemia major, where there is beta-chain production failure, HbA(2) acts as the predominant oxygen deliverer. HbA(2) has two more important features. (1) It is more resistant to thermal denaturation than HbA, and (2) it inhibits the polymerization of deoxy sickle hemoglobin (HbS). Hemoglobin E (E26K(beta)), formed as a result of the splice site mutation on exon 1 of the beta-globin gene, is another important hemoglobin variant which is known to be unstable at high temperatures. Both heterozygous HbE (HbAE) and homozygous HbE (HbEE) are benign disorders, but when HbE combines with beta-thalassemia, it causes E/beta-thalassemia which has severe clinical consequences. In this paper, we present the crystal structures of HbA(2) and HbE at 2.20 and 1.74 A resolution, respectively, in their R2 states, which have been used here to provide the probable explanations of the thermal stability and instability of HbA(2) and HbE. Using the coordinates of R2 state HbA(2), we modeled the structure of T state HbA(2) which allowed us to address the structural basis of the antisickling property of HbA(2). Using the coordinates of the delta-chain of HbA(2) (R2 state), we also modeled the structure of hemoglobin homotetramer delta(4) that occurs in the case of rare HbH disease. From the differences in intersubunit contacts among beta(4), gamma(4), and delta(4), we formed a hypothesis regarding the possible tetramerization pathway of delta(4). The crystal structure of a ferrocyanide-bound HbA(2) at 1.88 A resolution is also presented here, which throws light on the location and the mode of binding of ferrocyanide anion with hemoglobin, predominantly using the residues involved in DPG binding. The pH dependence of ferrocyanide binding with hemoglobin has also been investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.