Glucosinolates contained in members of the Brassicaceae release isothiocyanates potentially useful in controlling Fusarium oxysporum pathogens in conifer seedling nursery soils. Our objective was to determine the toxicity of individual isothiocyanates to different growth stages of the fungus. Bioassays with four F. oxysporum isolates were conducted using sealed containers in which 0.3 μl of 2-propenyl, ethyl, buty, phenylethyl, benzyl, or phenyl isothiocyanate was allowed to volatilize. Propenyl and ethyl isothiocyanates were the most fungistatic of those compounds tested. The same concentrations of propenyl and ethyl isothiocyanates that inhibited mycelial growth completely suppressed conidial and chlamydospore germination of all isolates. Other isothiocyanates including ethyl, benzyl, and phenethyl were also fungitoxic to F. oxysporum conidia and chlamydospores. Reduction in pathogen populations resulting from a green-manure crop are likely achievable since chlamydospores are sensitive to isothiocyanate. Pathogenic F. oxysporum isolates infesting nursery soils would likely be most suppressed by species of plants such as Brassica carinata, B. nigra, and B. juncea, which contain glucosi-nolates that release high concentrations of propenyl isothiocyanate.
Diseases caused by Sclerotinia sclerotiorum (Lib) de Bary are difficult to control and cause increasing losses of horticultural crops worldwide. Reasons of this phenomenon are various: (i) the specialization of crop production that causes the accumulation of the pathogen in the soil; (ii) the lack of a safe and efficient method of soil fumigation; (iii) the specific life cycle of S. sclerotiorum with survival structures (sclerotia), resistant to chemical and biological degradation. Sclerotinia diseases depend on many environmental factors which determine sclerotia survival and ascospores dissemination, because plants are mainly infected by air-borne ascospores from carpogenic germination of sclerotia. Due to the lack of effective synthetic agents for eradication of S. sclerortiorum from soil considerable interest has been focused on biological control, especially the selection of microorganisms with mycoparasitic activity towards S. sclerotiorum sclerotia, that can decrease their number in the soil. In this work we review reports on the use of different antagonistic fungi and bacteria in the control of S. sclerotiorum and discuss the suppressive effect of organic amendments against this soil-borne pathogen.
Brassica tissues are potentially useful in the control of Aphanomyces root rot of peas (Pisum sativum), but identity of the responsible compounds and specific impacts of those compounds on the pathogen's infection potential remain uncertain. Brassica napus seed meals and water extracts from these meals were used to determine the effect of glucosinolate hydrolysis products on Aphanomyces euteiches f. sp. pisi. B. napus meal ('Dwarf Essex') containing glucosinolates and intact myrosinase, the enzyme responsible for glucosinolate hydrolysis, completely inhibited infection by A. euteiches f. sp. pisi oospores. Water extracts from this meal, likewise, severely inhibited infection by oospores, as well as mycelial growth. Extracts from autoclaved 'Dwarf Essex' meal, in which myrosinase was denatured, and a low glucosinolate B. napus variety ('Stonewall') produced little disease reduction and had less impact on mycelial growth. Gas chromatographic analysis of Brassica tissues and water extracts confirmed that glucosinolates remained in autoclaved 'Dwarf Essex' meal and that 'Stonewall' meal contained low glucosinolate concentrations. 5-Vinyloxazolidine-2-thione was identified by mass spectrometry as a dominant glucosinolate hydrolysis product in aqueous extracts of the inhibitory meal. Bioassays conducted with aqueous solutions of this compound reduced mycelial growth, but not to the extent of those from intact 'Dwarf Essex' meal. Water-soluble compounds produced from the hydrolysis of glucosinolates in B. napus tissues reduced A. euteiches oospore infection and inhibited mycelial growth, thus, demonstrating potential utility of Brassica species in the control of A. euteiches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.