The epidemiology of hepatitis B in hospital personnel was studied by testing of sera from 3,770 employees of the Medical School of Hannover (Hannover, West Germany) for hepatitis B surface antigen (HBsAg) and its corresponding antibody (anti-HBs) by solid-phase radioimmunoassay. An average prevalence of 2.2% for HBsAg and 11.7% for anti-HBs was found. Physicians (18.2%), nurses (20.1%), and members of the cleaning service (26.3%) showed the highest frequencies of HBsAg or anti-HBs carriage. In a study of age- and sex-matched personnel, nurses showed a significantly (P less than 0.01) higher rate of infection than a control group with less exposure to infectious materials. The frequency of HBsAg or anti-HBs was highest in persons associated with dialysis (31.3%), anesthesiology (31.0%), ophthalmology (29.4%, neurosurgery (28.0%), and surgery (24.4%). The rate of infection was significantly higher in surgical departments (24.4%) than in nonsurgical ones (13.3%). Persons who had been nursing patients with hepatitis were significantly (P less than 0.05) more frequently carriers of HBsAg or anti-HBs than a comparable control group.
A series of seven 1-aryl-3.3-dialkyltriazenes, including 1-phenyl-3.3-dimethyltriazene (DMPT), 1-phenyl-3.3-di-(trideuteromethyl)-triazene (DMPT-ds), 1-p-methylphenyl-3.3-dimethyltriazene (DMpMPT), 1-p-nitrophenyl-3.3-dimethyltriazene (DMpNPT), 1-phenyl-3.3-diethyltriazene (DEPT), 1-phenyl-3.3-di-n-propyltriazene (DnPrPT) and 1-phenyl-3.3-diisopropyltriazene (DiPrPT) and 1.3-diphenyl-3-methyltriazene (DPMT), was synthesized and characterized by UV/VIS, IR and 1H-NMR spectroscopy. Chemical half-life was determined in phosphate buffer at 37 degrees using UV/VIS spectroscopy. With the exception of DMpNPT, which was stable, the triazenes underwent pH-dependent hydrolytic decomposition (acid catalysis). By means of UV/VIS spectra, TLC and HPLC, phenol, aniline and secondary azocoupling products were identified after complete hydrolytic cleavage of the parent compounds. Pathways of spontaneous hydrolysis are proposed and discussed. Genotoxic activity of the triazenes was assayed by measurement of sister chromatid exchanges (SCE) in V79-E cells without and with rat liver S9 mix as an exogenous metabolizing system. In the direct SCE assay (without S9 mix), all triazenes except DMpNPT exerted a toxic action (cell cycle delay) in a narrow concentration range between no effect and overt cytotoxicity. This non-specific toxicity depended on the pH of the incubation system and was inversely proportional to chemical half-life. The toxicity of these agents is most likely due to the arenediazonium cation which is a relatively stable intermediate. In a sublethal concentration range most triazeness induced significant increases of SCE rates. These are interpreted as an indirect consequence of cytotoxicity. Upon metabolic activation, the compounds were genotoxic in a dose-dependent fashion. Their SCE-inducing capacity depended on the nature of the alkylating species generated, i.e., the alkyldiazonium cation, and on chemical stability. Surprisingly, no deuterium isotope effect was observed in DMPT-d6. The order of genotoxic activity among the aryldialkyltriazenes was DMpNPT much greater than DMPT = DMPT-ds greater than DMpMPT much greater than DEPT greater than DnPrPT greater than or equal to DiPrPT. DPMT was a marginal SCE inducer but very toxic upon metabolic activation. As monooxygenation of DPMT, like spontaneous hydrolysis, should generate a phenyldiazonium cation, the results suggest that arylation of DNA causes a very low SCE induction, if any.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.