A systematic structural analysis of FePt, CuAu, and Au icosahedral nanoparticles is presented. The uncovered particles are prepared by inert gas condensation and thermally equilibrated through in-flight optical annealing. Aberration-corrected high-resolution transmission electron microscopy reveals that the crystal lattice is significantly expanded near the particle surface. These experimental findings are corroborated by molecular statics simulations that show that this near-surface strain originates from both intrinsic strain due to the icosahedral structure and a partial segregation of the larger of the two alloy constituents to the particle surface.
The effect of millisecond flash lamp annealing (FLA) on aluminum doped ZnO (AZO) films and their interface with Si have been studied. The AZO films were deposited by magnetron sputtering on Si (100) substrates. The electrical and structural properties of the film and AZO/Si structures were characterized by current-voltage, capacitance-voltage, and deep level transient spectroscopy measurements, X-ray diffraction, and secondary ion mass spectrometry. The resistivity of the AZO film is reduced to a close to state-of-the-art value of 2 Â 10 À4 X cm after FLA for 3 ms with an average energy density of 29 J/cm 2. In addition, most of the interfacial defects energy levels are simultaneously annealed out, except for one persisting shallow level, tentatively assigned to the vacancy-oxygen complex in Si, which was not affected by FLA. Subsequent to the FLA, the samples were treated in N 2 or forming gas (FG) (N 2 /H 2 , 90/10% mole) ambient at 200-500 C. The latter samples maintained the low resistivity achieved after the FLA, but not the former ones. The interfacial defect level persisting after the FLA is removed by the FG treatment, concurrently as another level emerges at $0.18 eV below the conduction band. The electrical data of the AZO films are discussed in term of point defects controlling the resistivity, and it is argued that the FLA promotes formation of electrically neutral clusters of Zink vacancies (V Zn 's) rather than passivating/compensating complexes between the Al donors and V Zn 's. Published by AIP Publishing.
We demonstrate reliable contacting of metallic nanoparticles in metallic junctions. The junctions are prepared using electron beam lithography (EBL) and investigated by means of transmission electron microscopy (TEM) and electrical transport measurements. The size, shape, and crystalline structure of the particles can be clearly identified in our junctions. These properties are then related to low temperature measurements of the conductance of these devices. Due to the weak coupling of the metallic electrodes to the particles, Coulomb blockade (CB) effects are found in these junctions.Au nanoparticles situated in between Au nanocontacts imaged in a transmission electron microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.