<p>We revisit the discussion on the geological processes able to remagnetize vast extensions of intracratonic basins. The main hypotheses for these processes involve: (1) external warm fluids, (2) hydrocarbon maturation, or (3) burial diagenesis and clay minerals transformation. Here we combine classical rock magnetic properties, with micro-to-nanoscale imaging/chemical analysis performed at the Brazilian Synchrotron Light Facility (SIRIUS). Highly sensitive X-ray fluorescence (XRF) and X-ray Absorption Near Edge Structure (XANES) were performed on a Coherent X-ray Nanoprobe Beamline, scanning microscopic regions on thin sections of remagnetized Neoproterozoic carbonate rocks of the S&#227;o Francisco Craton. These rocks rarely yield any primary remanent magnetization. Instead, distinct geological formations separated by hundreds of kilometers bear an undistinguishable single-polarity characteristic direction carried by both monoclinic pyrrhotite and magnetite. Unmixing of susceptibility components of distorted magnetic hysteresis (potbellies and wasp-waisted) suggests two coercivity fractions and show a strong paramagnetic contribution that surpasses both ferromagnetic and diamagnetic (from calcite/dolomite) signatures. SEM-EDS analysis reveals iron oxides/sulfides embedded in a clay mineral matrix, while XRF data shows a strong spatial correlation of these nanometric remanence-bearing minerals (500-1000 nm) within regions enriched in potassium. XANES spectra of 1000 to 1200 nm particles indicate either stoichiometric euhedral magnetite, or spherical grains with a core-shell structure with magnetite rimmed by maghemite. The identification of these remanence-bearing phases within the pseudo-single domain (PSD) size range, systematically associated to clay minerals (responsible for the important paramagnetic contribution in magnetic hysteresis), might suggest that clay transformation, namely smectite to illite, is an important phenomenon controlling remagnetization of these carbonates</p>
Quantifying the contributions of distinct mineral populations in bulk magnetic experiments greatly enhances the analysis of environmental and rock magnetism studies. Here we develop a new method of parametric unmixing of susceptibility components in hysteresis loops. Our approach is based on a modified Gamma-Cauchy exponential model, that accounts for variable skewness and kurtosis. The robustness of the model is tested with synthetic curves that examine the effects of noise, sampling, and proximity of susceptibility components. We provide a Python-based script, the Hist-unmix package, which allows the user to adjust a direct model of up to three ferromagnetic components as well as a dia/paramagnetic contribution. Optimization of all the parameters is achieved through least squares fit (Levenberg-Marquardt method), with uncertainties of each inverted parameter calculated through a Monte Carlo error propagation approach. For each ferromagnetic component, it is possible to estimate the magnetization saturation (Ms), magnetization saturation of remanence (Mrs) and the mean coercivity (Bc). Finally, Hist-unmix was applied to a set of weakly magnetic carbonate rocks from Brazil, which typically show distorted hysteresis cycles (wasp-waisted and potbellied loops). For these samples, we resolved two components with distinct coercivities. These results are corroborated by previous experimental data, showing that the lower branch of magnetic hysteresis can be modeled by the presented approach and might offer important mineralogical information for rock magnetic and paleomagnetic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.