While openings are an essential requirement in buildings as a source of access, fresh air and sunlight, these openings cause a reduction in the lateral stiffness and torsional resistance of masonry wall units. A detailed numerical investigation was carried out to explore the impact of the opening percentage on the in-plane stiffness and lateral strength of unconfined and confined masonry wall panels prepared using calcium silicate bricks, for sustainable masonry structures. A commercially available FEM package (ANSYS) was used to carry out comparative analysis of ten wall panels, five of each type (confined and unconfined masonry walls) with concentrically located openings of varying sizes (0% to 16.5%). A simplified micro-modeling technique following the Newton Raphson Algorithm was adopted. Results revealed that the confined masonry approach unveiled a more reliable anti-seismic response along with improved in-plane strength in the case of confined masonry walls. The failure type shifted from pure flexural to more of a blend of shear and flexure after the opening percentage increased to 10.09% in unconfined masonry walls, which was not the case where confinement was provided. Based on the outcomes, it is strongly recommended to adopt confined masonry in highly seismic-prone areas to avoid catastrophic damage caused by earthquakes.
Geopolymer concrete is preferred over OPC due to its use of energy waste such as fly ash, making it more sustainable and energy-efficient. However, limited research has been done on its seismic characterization in confined masonry, highlighting a gap in sustainable earthquake-resistant structures. Our study compares the performance of alkali-activated fly-ash-based geopolymer concrete bare frame and confined masonry wall panels with conventional concrete. Experimental results showed that geopolymer concrete bare frame has 3.5% higher initial stiffness and 1.0% higher lateral load-bearing capacity compared to conventional concrete. Geopolymer concrete confined masonry exhibited 45.2% higher initial stiffness and 4.1% higher ultimate seismic capacity than traditional concrete. The experimental results were verified using a numerical simulation technique with ANSYS-APDL, showing good correlation. Comparison with previously tested masonry walls revealed that GPC confined masonry has similar structural behavior to cement concrete masonry. This study demonstrates that geopolymer concrete made from waste energy such as fly ash is a sustainable and low-energy substitute for OPC concrete, particularly in highly seismic-prone areas, for a cleaner environment.
The study investigates the reduction in masonry walls' strength with different opening sizes and aspect ratios using simplified micro modeling. Calibration of the numerical wall model was done by following an existing wall model from the literature. Springs (COMBIN39) were used to model the compression and shear strength of mortar, whereas contact elements (CONTA178) were used to model the bond between mortar and bricks. The load was provided in two phases; first, the gravity load was applied in the vertical direction to compress the wall then the lateral load was applied. Five walls with an opening size 0%, 1.85%, 3.66%, 10.91%, and 16.5% of the total wall area have been modeled in this study. The analysis results showed that up to an opening area of 4% masonry wall showed approximately 50% reduction in strength and stiffness. Beyond 4% opening size, strength and stiffness drop almost linearly. Such modeling can save cost, time, and know beforehand the type of failure of a masonry wall to avoid life loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.