Oxidation of 5-methylcytosine (5mC) in DNA by the Ten-eleven translocation (TET) family of enzymes is indispensable for gene regulation in mammals. More recently, evidence has emerged to support a biological function for TET-mediated m5C oxidation in messenger RNA. Here, we describe a previously uncharacterized role of TET-mediated m5C oxidation in transfer RNA (tRNAs). We found that the TET-mediated oxidation product 5-hydroxylmethylcytosine (hm5C) is specifically enriched in tRNA inside cells and that the oxidation activity of TET2 on m5C in tRNAs can be readily observed in vitro. We further observed that hm5C levels in tRNA were significantly decreased in Tet2 KO mouse embryonic stem cells (mESCs) in comparison to wild type mESCs. Reciprocally, induced expression of the catalytic domain of TET2 led to an obvious increase in hm5C and a decrease in m5C in tRNAs relative to uninduced cells. Strikingly, we also show that TET2-mediated m5C oxidation in tRNA promotes translation in vitro. These results suggest TET2 may influence translation through impacting tRNA methylation and reveal an unexpected role for TET enzymes in regulating multiple nodes of the central dogma.
TET enzymes catalyze repeated oxidations of 5-methylcytosine in genomic DNA. Due to the challenges of track-ing reactivity within a complex DNA substrate, chemical tools to probe TET activity are limited, despite these enzyme’s crucial role in epigenetic regulation. Here, building on precedents from related Fe(II)/α-ketoglutarate-dependent dioxygenases, we show that TET enzymes can promiscuously act upon cytosine bases with unnatural 5-position modifications. Oxidation of 5-vinylcytosine (vC) in DNA results in the predominant formation of a 5-formylmethylcytosine product that can be efficiently labeled to provide an end-point read-out for TET activity. The reaction with 5-ethynylcytosine (eyC), moreover, results in the formation of a high-energy ketene intermediate that can selectively trap any active TET isoform as a covalent enzyme-DNA complex, even in the complex milieu of a total cell lysate. Exploiting substrate promiscuity therefore offers a new and needed means to directly track TET activity in vitro or in vivo.
8-Alkoxyadenosines have the potential to exist in anti or syn conformations around the glycosidic bond when paired opposite to U or G in the complementary strands, thereby placing the sterically demanding 8-alkoxy groups in the major or minor groove, respectively, of duplex RNA. These modified bases were used as ‘base switches’ in the guide strands of an siRNA to prevent off-pathway protein binding during delivery via placement of the alkoxy group in the minor groove, while maintaining significant RNAi efficacy by orienting the alkoxy group in the major groove. 8-Alkoxyadenosine phosphoramidites were synthesized and incorporated into the guide strand of caspase 2 siRNA at four different positions--two in the seed region, one at the cleavage junction and another nearer to the 3′-end of the guide strand. Thermal stabilities of the corresponding siRNA duplexes showed that U is preferred over G as the base-pairing partner in the complementary strand. When compared to the unmodified positive control siRNAs, singly modified siRNAs knocked down the target mRNA efficiently and with little or no loss of efficacy. Doubly modified siRNAs were found to be less effective and lose their efficacy at low nanomolar concentrations. SiRNAs singly modified at positions 6 and 10 of the guide strand were found to be effective in blocking binding to the RNA-dependent protein kinase PKR, a cytoplasmic dsRNA-binding protein implicated in sequence independent off target effects.
TET family enzymes are known for oxidation of the 5‐methyl substituent on 5‐methylcytosine (5mC) in DNA. 5mC oxidation generates the stable base 5‐hydroxymethylcytosine (5hmC), starting an indirect, multi‐step process that ends with reversion of 5mC to unmodified cytosine. While probing the nucleobase determinants of 5mC recognition, we discovered that TET enzymes are also proficient as direct N‐demethylases of cytosine bases. We find that N‐demethylase activity can be readily observed on substrates lacking a 5‐methyl group and, remarkably, TET enzymes can be similarly proficient in either oxidation of 5mC or demethylation of N4‐methyl substituents. Our results indicate that TET enzymes can act as both direct and indirect demethylases, highlight the active‐site plasticity of these FeII/α‐ketoglutarate‐dependent dioxygenases, and suggest activity on unexplored substrates that could reveal new TET biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.