Abstract-Differential evolution (DE) is well known as a simple and efficient scheme for global optimization over continuous spaces. It has reportedly outperformed a few evolutionary algorithms (EAs) and other search heuristics like the particle swarm optimization (PSO) when tested over both benchmark and realworld problems. DE, however, is not completely free from the problems of slow and/or premature convergence. This paper describes a family of improved variants of the DE/target-tobest/1/bin scheme, which utilizes the concept of the neighborhood of each population member. The idea of small neighborhoods, defined over the index-graph of parameter vectors, draws inspiration from the community of the PSO algorithms. The proposed schemes balance the exploration and exploitation abilities of DE without imposing serious additional burdens in terms of function evaluations. They are shown to be statistically significantly better than or at least comparable to several existing DE variants as well as a few other significant evolutionary computing techniques over a test suite of 24 benchmark functions. The paper also investigates the applications of the new DE variants to two reallife problems concerning parameter estimation for frequency modulated sound waves and spread spectrum radar poly-phase code design.
Differential evolution (DE) is well known as a simple and efficient scheme for global optimization over continuous spaces. In this paper we present two new, improved variants of DE. Performance comparisons of the two proposed methods are provided against (a) the original DE, (b) the canonical particle swarm optimization (PSO), and (c) two PSO-variants. The new DE-variants are shown to be statistically significantly better on a seven-function test bed for the following performance measures: solution quality, time to find the solution, frequency of finding the solution, and scalability.
A Markov chain framework is developed for analyzing a wide variety of selection techniques used in genetic algorithms (GAs) and evolution strategies (ESs). Specifically, we consider linear ranking selection, probabilistic binary tournament selection, deterministic s-ary (s = 3,4, …) tournament selection, fitness-proportionate selection, selection in Whitley's GENITOR, selection in (μ, λ)-ES, selection in (μ + λ)-ES, (μ, λ)-linear ranking selection in GAs, (μ + λ)-linear ranking selection in GAs, and selection in Eshelman's CHC algorithm. The analysis enables us to compare and contrast the various selection algorithms with respect to several performance measures based on the probability of takeover. Our analysis is exact—we do not make any assumptions or approximations. Finite population sizes are considered. Our approach is perfectly general, and following the methods of this paper, it is possible to analyze any selection strategy in evolutionary algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.