Studies suggest that the human lumbosacral spinal cord can generate steplike oscillating electromyographic (EMG) patterns, but it remains unclear to what degree these efferent patterns depend on the phasic peripheral sensory information associated with bilateral limb movements and loading. We examined the role of sensory information related to lower-extremity weight bearing in modulating the efferent motor patterns of spinal-cord-injured (SCI) subjects during manually assisted stepping on a treadmill. Four nonambulatory subjects, each with a chronic thoracic spinal cord injury, and two nondisabled subjects were studied. The level of loading, EMG patterns, and kinematics of the lower limbs were studied during manually assisted or unassisted stepping on a treadmill with body weight support. The relationships among lumbosacral motor pool activity [soleus (SOL), medial gastrocnemius (MG), and tibialis anterior (TA)], limb load, muscle-tendon length, and velocity of muscle-tendon length change were examined. The EMG mean amplitude of the SOL, MG, and TA was directly related to the peak load per step on the lower limb during locomotion. The effects on the EMG amplitude were qualitatively similar in subjects with normal, partial, or no detectable supraspinal input. Responses were most consistent in the SOL and MG at load levels of < 50% of a subject's body weight. The modulation of the EMG amplitude from the SOL and MG, both across steps and within a step, was more closely associated with limb peak load than muscle-tendon stretch or the velocity of muscle-tendon stretch. Thus stretch reflexes were not the sole source of the phasic EMG activity in flexors and extensors during manually assisted stepping in SCI subjects. The EMG amplitude within a step was highly dependent on the phase of the step cycle regardless of level of load. These data suggest that level of loading on the lower limbs provides cues that enable the human lumbosacral spinal cord to modulate efferent output in a manner that may facilitate the generation of stepping. These data provide a rationale for gait rehabilitation strategies that utilize the level of load-bearing stepping to enhance the locomotor capability of SCI subjects.
Epiretinal prostheses are designed to restore functional vision to the blind by electrically stimulating surviving retinal neurons. These devices have classically employed symmetric biphasic current pulses in order to maintain a balance of charge. Prior electrophysiological and psychophysical studies in peripheral nerve show that adding an interphase gap (IPG) between the two phases makes stimulation more efficient than pulses with no gap. We investigated the effect of IPG duration on retinal ganglion cell (RGC) electrical thresholds in salamander retina, as well as phosphene perceptual thresholds in epiretinal prosthesis patients. In general, there was a negative exponential correlation between threshold and IPG duration. Durations greater than or equal to ~0.5 ms reduced salamander RGC thresholds by 20–25%. Psychophysical testing in five retinal prosthesis patients indicated that stimulating with IPGs can decrease phosphene perceptual thresholds by 10–15%. Results from Hodgkin-Huxley-type simulations of RGC behavior corroborated the observed behavior. Incorporating interphase gaps can reduce the power consumption of epiretinal prostheses and increase the available dynamic range of phosphene size and brightness.
Stimulation of primary visual cortices has the potential to restore some degree of vision to blind individuals. Developing safe and reliable visual cortical prostheses requires assessment of the long-term stability, feasibility, and safety of generating stimulation-evoked perceptions.A NeuroPace responsive neurostimulation system was implanted in a blind individual with an 8-year history of bare light perception, and stimulation-evoked phosphenes were evaluated over 19 months (41 test sessions). Electrical stimulation was delivered via two four-contact subdural electrode strips implanted over the right medial occipital cortex. Current and charge thresholds for eliciting visual perception (phosphenes) were measured, as were the shape, size, location, and intensity of the phosphenes. Adverse events were also assessed.Stimulation of all contacts resulted in phosphene perception. Phosphenes appeared completely or partially in the left hemifield. Stimulation of the electrodes below the calcarine sulcus elicited phosphenes in the superior hemifield and vice versa. Changing the stimulation parameters of frequency, pulse width, and burst duration affected current thresholds for eliciting phosphenes, and increasing the amplitude or frequency of stimulation resulted in brighter perceptions. While stimulation thresholds decreased between an average of 5% and 12% after 19 months, spatial mapping of phosphenes remained consistent over time. Although no serious adverse events were observed, the subject experienced mild headaches and dizziness in three instances, symptoms that did not persist for more than a few hours and for which no clinical intervention was required.Using an off-the-shelf neurostimulator, the authors were able to reliably generate phosphenes in different areas of the visual field over 19 months with no serious adverse events, providing preliminary proof of feasibility and safety to proceed with visual epicortical prosthetic clinical trials. Moreover, they systematically explored the relationship between stimulation parameters and phosphene thresholds and discovered the direct relation of perception thresholds based on primary visual cortex (V1) neuronal population excitation thresholds.
Background: Visual cortical prostheses (VCPs) have the potential to restore visual function to patients with acquired blindness. Successful implementation of VCPs requires the ability to reliably map the location of the phosphene produced by stimulation of each implanted electrode. Objective: To evaluate the efficacy of different approaches to phosphene mapping and propose simple improvements to mapping strategy. Methods: We stimulated electrodes implanted in the visual cortex of five blind and fifteen sighted patients. We tested two fixation strategies, unimanual fixation, where subjects placed a single index finger on a tactile fixation point and bimanual fixation, where subjects overlaid their right index finger over their left on the tactile point. In addition, we compared absolute mapping in which a single electrode was stimulated on each trial, and relative mapping with sequences containing stimulation of three to five phosphenes on each trial. Trial-to-trial variability present in relative mapping sequences was quantified. Results: Phosphene mapping was less precise in blind subjects than in sighted subjects (2DRMS, 16 ± 2.9 vs. 1.9 ± 0.93 ; t (18) ¼ 18, p ¼ <0.001). Within blind subjects, bimanual fixation resulted in more consistent phosphene localization than unimanual fixation (BS1: 4.0 ± 2.6 vs. 19 ± 4.7 , t (79) ¼ 24, p < 0.001; BS2 4.1 ± 2.0 vs. 12 ± 2.7 , t (65) ¼ 19, p < 0.001). Multi-point relative mapping had similar baseline precision to absolute mapping (BS1: 4.7 ± 2.6 vs. 3.9 ± 2.0 ; BS2: 4.1 ± 2.0 vs. 3.2 ± 1.1 ) but improved significantly when trial-to-trial translational variability was removed. Although multi-point mapping methods did reveal more of the functional organization expected in early visual cortex, subjects tended to artificially regularize the spacing between phosphenes. We attempt to address this issue by fitting a standard logarithmic map to relative multi-point sequences. Conclusions: Relative mapping methods, combined with bimanual fixation, resulted in the most precise estimates of phosphene organization. These techniques, combined with use of a standard logarithmic model of visual cortex, may provide a practical way to improve the implementation of a VCP.
Eye movements and the perceived location of phosphenes generated by intracranial primary visual cortex stimulation in the blind, Brain Stimulation (2021), doi:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.