Fe(bpy)(3)(2+) (where bpy = 2,2' bipyridyl) immobilized Nafion (Nf) modified glassy carbon electrodes were prepared and they showed excellent electrocatalytic oxidation of nitrite (NO(2)(-)) which leads to the sensitive determination of NO(2)(-). Electrostatic repulsion between NO(2)(-) and Nf film is greatly decreased when Nf film is fully exchanged with cations.
This paper describes the preparation and electrocatalytic activity of nanocomposites composed of reduced graphene oxide and Au25 clusters. Well‐defined nanocomposites are prepared by coating the surface of reduced graphene oxide with multiple layers of Au25 film, the thickness of which can be precisely controlled according to the preparation conditions. The electrocatalytic activity of the nanocomposites are examined for the reduction of [Ru(NH3)6]3+ and in the oxygen reduction reaction by chronoamperometry and electrochemical impedance spectroscopy as a function of Au25 thickness. Whereas the catalytic rate constants obtained for the reduction of [Ru(NH3)6]3+ are found to be rather constant with varying Au25 thickness, those for the oxygen reduction reaction increased drastically with an increasing number of Au25 layers. This increase can be ascribed to the porous structures generated in the nanocomposites. The porous channels generated in the nanocomposites offer confined space surrounded by electrified surface, greatly enhancing the electrocatalytic activity for the oxygen reduction reaction. Additional rotating disk electrode and rotating ring‐disk electrode voltammetry show that the nanocomposites support an efficient four‐electron reduction of oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.