Advanced machine learning techniques have unfurled their applications in various interdisciplinary areas of research and development. This paper highlights the use of image regression algorithms based on advanced neural networks to understand the magnetic properties directly from the magnetic microstructure. In this study, Co/Pd multilayers have been chosen as a reference material system that displays maze-like magnetic domains in pristine conditions. Irradiation of Ar+ ions with two different energies (50 and 100 keV) at various fluences was used as an external perturbation to investigate the modification of magnetic and structural properties from a state of perpendicular magnetic anisotropy to the vicinity of the spin reorientation transition. Magnetic force microscopy revealed domain fragmentation with a smaller periodicity and weaker magnetic contrast up to the fluence of 1014 ions/cm2. Further increases in the ion fluence result in the formation of feather-like domains with a variation in local magnetization distribution. The experimental results were complemented with micromagnetic simulations, where the variations of effective magnetic anisotropy and exchange constant result in qualitatively similar changes in magnetic domains, as observed experimentally. Importantly, a set of 960 simulated domain images was generated to train, validate, and test the convolutional neural network (CNN) that predicts the magnetic properties directly from the domain images with a high level of accuracy (maximum 93.9%). Our work has immense importance in promoting the applications of image regression methods through the CNN in understanding integral magnetic properties obtained from the microscopic features subject to change under external perturbations.
Machine-learning techniques are revolutionizing the way to perform efficient materials modeling. We here propose a combinatorial machine-learning approach to obtain physical formulas based on simple and easily accessible ingredients, such as atomic properties. The latter are used to build materials features that are finally employed, through linear regression, to predict the energetic stability of semiconducting binary compounds with respect to zinc blende and rocksalt crystal structures. The adopted models are trained using a dataset built from first-principles calculations. Our results show that already one-dimensional (1D) formulas well describe the energetics; a simple grid-search optimization of the automatically obtained 1D-formulas enhances the prediction performance at a very small computational cost. In addition, our approach allows one to highlight the role of the different atomic properties involved in the formulas. The computed formulas clearly indicate that “spatial” atomic properties (i.e., radii indicating maximum probability densities for [Formula: see text] electronic shells) drive the stabilization of one crystal structure with respect to the other, suggesting the major relevance of the radius associated with the [Formula: see text]-shell of the cation species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.