Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis.
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications).
Fructose-1, 6-bisphosphatase deficiency is an autosomal recessive disorder of gluconeogenesis caused by genetic defect in the FBP1 gene. It is characterized by episodic, often life-threatening metabolic acidosis, liver dysfunction, and hyperlactatemia. Without a high index of suspicion, it may remain undiagnosed with devastating consequences. Accurate diagnosis can be achieved either by enzyme assay or gene studies. Enzyme assay requires a liver biopsy and is tedious, invasive, expensive, and not easily available. Therefore, genetic testing is the most appropriate method to confirm the diagnosis. Molecular studies were performed on 18 suspected cases presenting with episodic symptoms. Seven different pathogenic variants were identified. Two common variants were noted in two subpopulations from the Indian subcontinent; p.Glu281Lys (E281K) occurred most frequently (in 10 patients) followed by p.Arg158Trp (R158W, in 4 patients). Molecular analysis confirmed the diagnosis and helped in managing these patients by providing appropriate genetic counseling. In conclusion, genetic studies identified two common variants in the Indian subcontinent, thus simplifying the diagnostic algorithm in this treatable disorder.
Hereditary fructose intolerance (HFI) is a difficult-to-confirm diagnosis, requiring either invasive liver biopsy-enzyme assay or potentially hazardous fructose challenge test or expensive molecular genetic analysis. Therefore, worldwide there has been a trend towards finding "common mutations" in distinct ethnic groups to simplify the process of diagnosis. The nonspecific presentation of the disease often leads to diagnostic confusion with other metabolic liver disorders such as glycogenoses, galactosemia, and tyrosinemia. This leads to much delay in diagnosis with consequent harm to the patient.We report mutations in the ALDOB gene, from eleven Indian patients, seven of whom belong to the Agarwal community. Six patients from the Agarwal community and two non-Agarwal patients harbored one novel mutation, c.324+1G>A (five homozygous and one heterozygous), in the ALDOB gene. Haplotyping performed in families confirmed a founder effect. The community has been known to harbor founder mutations in other genes such as the MLC1, PANK2, and CAPN3 genes, thus providing another evidence for a founder effect in the community in case of HFI. This may pave the path for a simpler and quicker test at least for this community in India. In addition to the founder mutation, we report four other novel mutations, c.112+1delG, c.380-1G>A, c.677G>A, and c.689delA, and a previously reported mutation, c.1013C>T, in the cohort from India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.