Hierarchical decompositions of graphs are interesting for algorithmic purposes. There are several types of hierarchical decompositions. Tree decomposi-tions are the best known ones. On graphs of tree-width at most k, i.e., that have tree decompositions of width at most k, where k is fixed, every decision or optimization problem expressible in monadic second-order logic has a linear algorithm. We prove that this is also the case for graphs of clique-width at most k, where this complexity measure is associated with hierarchical decompositions of another type, and where logical formulas are no longer allowed to use edge set quantifications. We develop applications to several classes of graphs that include cographs and are, like cographs, defined by forbidding subgraphs with "too many" induced paths with four vertices.
Abstract. Hierarchical decompositions of graphs are interesting for algorithmic purposes. There are several types of hierarchical decompositions. Tree decompositions are the best known ones. On graphs of tree-width at most k, i.e., that have tree decompositions of width at most k, where k is fixed, every decision or optimization problem expressible in monadic second-order logic has a linear algorithm. We prove that this is also the case for graphs of clique-width at most k, where this complexity measure is associated with hierarchical decompositions of another type, and where logical formulas are no longer allowed to use edge set quantifications. We develop applications to several classes of graphs that include cographs and are, like cographs, defined by forbidding subgraphs with "too many" induced paths with four vertices.
We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is deÿnable in monadic second-order logic (MSOL). We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases, where the decomposition, which establishes the bound on the clique-width, can be computed in polynomial time and for problems expressible by monadic second-order formulas without edge set quantiÿcation. Such quantiÿcations are allowed in the case of graphs with bounded tree-width. As applications we discuss in detail how this a ects the parametrized complexity of the permanent and the hamiltonian of a matrix, and more generally, various generating functions of MSOL deÿnable graph properties. Finally, our results are also applicable to SAT and ]SAT .
Graphs of clique-width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by fc-expressions based on graph operations which use k vertex labels. In this paper we study the clique-width of perfect graph classes. On one hand, we show that every distance-hereditary graph, has clique-width at most 3, and a 3-expression defining it can be obtained in linear time. On the other hand, we show that the classes of unit interval and permutation graphs are not of bounded clique-width. More precisely, we show that for every n € Af there is a unit interval graph I n and a permutation graph H n having n 2 vertices, each of whose clique-width is at least n. These results allow us to see the border within the hierarchy of perfect graphs between classes whose clique-width is bounded and classes whose clique-width is unbounded. Finally we show that every n x n square grid, n £ JV/", n > 3, has clique-width exactly n + 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.