Electrocatalytic
hydrogenation is increasingly studied as an alternative
to integrate the use of recycled carbon feedstocks with renewable
energy sources. However, the abundant empiric observations available
have not been correlated with fundamental properties of substrates
and catalysts. In this study, we investigated electrocatalytic hydrogenation
of a homologues series of carboxylic acids, ketones, phenolics, and
aldehydes on a variety of metals (Pd, Rh, Ru, Cu, Ni, Zn, and Co).
We found that the rates of carbonyl reduction in aldehydes correlate
with the corresponding binding energies between the aldehydes and
the metals according to the Sabatier principle. That is, the highest
rates are obtained at intermediate binding energies. The rates of
H2 evolution that occur in parallel to hydrogenation also
correlate with the H-metal binding energies, following the same volcano-type
behavior. Within the boundaries of this model (e.g., compounds reactive
at room temperature and without important steric effects over the
carbonyl group), the reported correlations help to explain the complex
trends derived from the experimental observations, allowing for the
correlation of rates with binding energies and the differentiation
of mechanistic routes.
Copper nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. Oxidation of the SMAD prepared copper colloids resulted in Cu@Cu(2)O core shell structures (7.7 +/- 1.8 nm) or Cu(2)O nanoparticles depending on the reaction conditions. The nano Cu, Cu@Cu(2)O core shell, and Cu(2)O particles were found to be catalytically active for the generation of hydrogen from ammonia-borane either via hydrolysis or methanolysis reaction.
Electrocatalytic hydrogenation and catalytic thermal hydrogenation of substituted phenols and diaryl ethers were studied on carbon-supported Rh. The rates of electrocatalytic hydrogenation increase with increasingly negative potentials, which have been related with the coverage of adsorbed hydrogen. The lowest and highest negative potentials in electrocatalytic hydrogenation correspond to the onset of H 2 evolution and to the onset of reactions involving the electrolyte, respectively. For electrocatalytic and catalytic thermal hydrogen addition reactions, the dominant reaction pathway is hydrogenation to cyclic alcohols and cycloalkyl ethers. The presence of substituting methyl or methoxy groups led to lower rates compared to unsubstituted phenol or diphenyl ether. Methoxy or benzyloxy groups, however, undergo CO bond cleavage via hydrogenolysis and hydrolysis (minor pathway). The surface chemical potential of hydrogen can be increased also by generating a H 2 atmosphere above the reaction media, supporting the conclusion that thermal and electrochemical routes share the same reaction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.