No abstract
Chilo iridescent virus (CIV), the type species of the genus Iridovirus, a member of the Iridoviridae family, is highly pathogenic for a variety of insect larvae. The virions contain a single linear ds DNA molecule that is circularly permuted and terminally redundant. The coding capacity and strategy of the CIV genome was elucidated by the analysis of the complete DNA nucleotide sequence of the viral genome (212,482 bp) using cycle sequencing by primer walking technology. Both DNA strands were sequenced independently and the average redundancy for each nucleotide was found to be 1.85. The base composition of the viral genomic DNA sequence was found to be 71.37% A+T and 28.63% G+C. The CIV genome contains 468 open reading frames (ORFs). The size of the individual viral gene products ranges between 40 and 2432 amino acids. The analysis of the coding capacity of the CIV genome revealed that 50% (234 ORFs) of all identified ORFs were nonoverlapping. The comparison of the deduced amino acid sequences to entries in protein data banks led to the identification of several genes with significant homologies, such as the two major subunits of the DNA-dependent RNA polymerase, DNA polymerase, protein kinase, thymidine and thymidylate kinase, thymidylate synthase, ribonucleoside-diphosphate reductase, major capsid protein, and others. The highest homologies were detected between putative viral gene products of CIV and lymphocystis disease virus of fish (LCDV). Although many CIV putative gene products showed significant homologies to the corresponding viral proteins of LCDV, no colinearity was detected when the coding strategies of the CIV and LCDV-1 were compared to each other. An intriguing result was the detection of a viral peptide of 53 amino acid residues (ORF 160L) showing high homology (identity/similarity: 60.0%/30.0%) to sillucin, an antibiotic peptide encoded by Rhizomucor pusillus. Iridovirus homologs of cellular genes possess particular implications for the molecular evolution of large DNA viruses.
In the last decades a significant number of so far unknown or underestimated pathogens have emerged as fundamental health hazards of the human population despite intensive research and exceptional efforts of modern medicine to embank and eradicate infectious diseases. Almost all incidents caused by such emerging pathogens could be ascribed to agents that are zoonotic or expanded their host range and crossed species barriers. Many different factors influence the status of a pathogen to remain unnoticed or evolves into a worldwide threat. The ability of an infectious agent to adapt to changing environmental conditions and variations in human behavior, population development, nutrition, education, social, and health status are relevant factors affecting the correlation between pathogen and host. Hantaviruses belong to the emerging pathogens having gained more and more attention in the last decades. These viruses are members of the family Bunyaviridae and are grouped into a separate genus known as Hantavirus. The serotypes Hantaan (HTN), Seoul (SEO), Puumala (PUU), and Dobrava (DOB) virus predominantly cause hemorrhagic fever with renal syndrome (HFRS), a disease characterized by renal failure, hemorrhages, and shock. In the recent past, many hantavirus isolates have been identified and classified in hitherto unaffected geographic regions in the New World (North, Middle, and South America) with characteristic features affecting the lungs of infected individuals and causing an acute pulmonary syndrome. Hantavirus outbreaks in the United States of America at the beginning of the 10th decade of the last century fundamentally changed our knowledge about the appearance of the hantavirus specific clinical picture, mortality, origin, and transmission route in human beings. The hantavirus pulmonary syndrome (HPS) was first recognized in 1993 in the Four Corners Region of the United States and had a lethality of more than 50%. Although the causative virus was first termed in connection with the geographic name of its outbreak region the analysis of the individual viruses indicate that the causing virus of HPS was a genetically distinct hantavirus and consequently termed as Sin Nombre virus. Hantaviruses are distributed worldwide and are assumed to share a long time period of co-evolution with specific rodent species as their natural reservoir. The degree of relatedness between virus serotypes normally coincides with the relatedness between their respective hosts. There are no known diseases that are associated with hantavirus infections in rodents underlining the amicable relationship between virus and host developed by mutual interaction in hundreds of thousands of years. Although rodents are the major reservoir, antibodies against hantaviruses are also present in domestic and wild animals like cats, dogs, pigs, cattle, and deer. Domestic animals and rodents live jointly in a similar habitat. Therefore the transmission of hantaviruses from rodents to domestic animals seems to be possible, if the target organs, tissues, and c...
The thymidylate synthase (TS, EC 2.1.1.45) is essential for the de novo synthesis of dTMP in pro- and eucaryotic organisms. Consequently it plays a major role in the replication of the DNA genome of a cell or a DNA virus. The gene encoding the TS of Chilo iridescent virus (CIV) was identified by nucleotide sequence analysis of the viral genome and was mapped within the EcoRI CIV DNA fragments G and R. Computer assisted analysis of the DNA nucleotide sequence between the genome coordinates 0.482 and 0.489 revealed an open reading frame (ORF) of 885 nucleotides. This ORF was found to encode a polypeptide of 295 amino acid residues (33.9 kDa) that showed significant homologies to known TS of different species including mammals, plants, fungi, protozoa, bacteria, and DNA viruses. The highest amino acid homologies were found between the CIV-TS and the TS of herpesvirus ateles (54.0%), Saccharomyces cerevisiae (51.8%), herpesvirus saimiri (51.0%), rhesus monkey rhadinovirus (50.7%), mouse (50.5%), rat (50.2%), varicella-zoster virus (50.2%), equine herpesvirus 2 (50.0%), and the human TS (48.4%). The CIV-TS contains six amino acid domains that are highly conserved in the TS of other species. Within these domains the major amino acid residues are present for which a functional role has been reported. The CIV-TS was found to be more closely related to the TS of eucaryotes than to the TS of procaryotes indicating the phylogenetic origin of the CIV-TS gene. The identification of a TS gene in the genome of CIV is the first report of a viral TS that is not encoded by a herpesvirus or a bacteriophage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.