Sox10 is a high-mobility-group transcriptional regulator in early neural crest. Without Sox10, no glia develop throughout the peripheral nervous system. Here we show that Sox10 is restricted in the central nervous system to myelin-forming oligodendroglia. In Sox10-deficient mice progenitors develop, but terminal differentiation is disrupted. No myelin was generated upon transplantation of Sox10-deficient neural stem cells into wild-type hosts showing the permanent, cell-autonomous nature of the defect. Sox10 directly regulates myelin gene expression in oligodendrocytes, but does not control erbB3 expression as in peripheral glia. Sox10 thus functions in peripheral and central glia at different stages and through different mechanisms.
The adhesion molecule L1 is a member of the immunoglobulin superfamily. L1 is involved in various recognition processes in the CNS and PNS, and binding to L1 can activate signal transduction pathways. Mutations in the human L1 gene are associated with a variable phenotype, including mental retardation and anomalous development of the nervous system, referred to as 'CRASH' (corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraplegia, and hydrocephalus). We generated an animal model of these conditions by gene targetting. Mutant mice were smaller than wild-type and were less sensitive to touch and pain, and their hind-legs appeared weak and uncoordinated. The size of the corticospinal tract was reduced and, depending on genetic background, the lateral ventricles were often enlarged. Non-myelinating Schwann cells formed processes not associated with axons and showed reduced association with axons. In vitro, neurite outgrowth on an L1 substrate and fasciculation were impaired. The mutant mouse described here will help to elucidate the functions of L1 in the nervous system and how these depend on genetic influences.
The metalloproteinase and major amyloid precursor protein (APP) ␣-secretase candidate ADAM10 is responsible for the shedding of proteins important for brain development, such as cadherins, ephrins, and Notch receptors. Adam10 ؊/؊ mice die at embryonic day 9.5, due to major defects in development of somites and vasculogenesis. To investigate the function of ADAM10 in brain, we generated Adam10 conditional knock-out (cKO) mice using a Nestin-Cre promotor, limiting ADAM10 inactivation to neural progenitor cells (NPCs) and NPC-derived neurons and glial cells. The cKO mice die perinatally with a disrupted neocortex and a severely reduced ganglionic eminence, due to precocious neuronal differentiation resulting in an early depletion of progenitor cells. Premature neuronal differentiation is associated with aberrant neuronal migration and a disorganized laminar architecture in the neocortex. Neurospheres derived from Adam10 cKO mice have a disrupted sphere organization and segregated more neurons at the expense of astrocytes. We found that Notch-1 processing was affected, leading to downregulation of several Notch-regulated genes in Adam10 cKO brains, in accordance with the central role of ADAM10 in this signaling pathway and explaining the neurogenic phenotype. Finally, we found that ␣-secretasemediated processing of APP was largely reduced in these neurons, demonstrating that ADAM10 represents the most important APP ␣-secretase in brain. Our study reveals that ADAM10 plays a central role in the developing brain by controlling mainly Notch-dependent pathways but likely also by reducing surface shedding of other neuronal membrane proteins including APP.
Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.