The SH2 domain protein tyrosine phosphatases (PTPases) PTP1C and PTP1D were found associated with epidermal growth factor (EGF) receptor which was purified from A431 cell membranes by several steps of chromatography. Both PTPases also associated with the EGF receptor upon exposure of immunoprecipitated receptor to lysates of MCF7 mammary carcinoma cells. The associated PTPases had little activity toward the bound receptor when it was autophosphorylated in vitro. Receptor dephosphorylation could, however, be initiated by treatment of the receptor-PTPase complex with phosphatidic acid (PA). When autophosphorylated EGF receptor was exposed to lysates of PTP1C or PTP1D overexpressing 293 cells, the association of PTP1C but not of PTP1D was enhanced in the presence of PA. In intact A431 cells, an association of PTP1C and PTP1D with the EGF receptor was detectable by coimmunoprecipitation experiments. PA treatment reduced the phosphorylation state of ligand activated EGF receptors in A431 cells and in 293 cells overexpressing EGF receptors together with PTP1C but not in 293 cells overexpressing EGF receptors alone or together with PTP1D. We conclude that PTP1C but not PTP1D participates in dephosphorylation of activated EGF receptors. A possible role of PA for physiological modulation of EGF receptor signaling is discussed.
Summary Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (cxEGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of aEGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside G M3 Likewise, the combination of aEGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in Hi 25 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by aEGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.