Metamodels aim to approximate characteristics of functions or systems from the knowledge extracted on only a finite number of samples. In recent years kriging has emerged as a widely applied metamodeling technique for resource-intensive computational experiments. However its prediction quality is highly dependent on the size and distribution of the given training points. Hence, in order to build proficient kriging models with as few samples as possible adaptive sampling strategies have gained considerable attention. These techniques aim to find pertinent points in an iterative manner based on information extracted from the current metamodel. A review of adaptive schemes for kriging proposed in the literature is presented in this article. The objective is to provide the reader with an overview of the main principles of adaptive techniques, and insightful details to pertinently employ available tools depending on the application at hand. In this context commonly applied strategies are compared with regards to their characteristics and approximation capabilities. In light of these experiments, it is found that the success of a scheme depends on the features of a specific problem and the goal of the analysis. In order to facilitate the entry into adaptive sampling a guide is provided. All experiments described herein are replicable using a provided open source toolbox.
For decades, extensive research efforts have been conducted to improve the functionality and stability of implants. Especially in dentistry, implant treatment has become a standard medical practice. The treatment restores full dental functionality, helping patients to maintain high quality of life. However, about 10% of the patients suffer from early and late device failure due to peri-implantitis, an inflammatory disease of the tissues surrounding the implant. Peri-implantitis is caused by progressive microbial colonization of the device surface and the formation of microbial communities, so-called biofilms. This infection can ultimately lead to implant failure. The causative agents for the inflammatory disease, periodontal pathogenic biofilms, have already been extensively studied, but are still not completely understood. As numerical simulations will have the potential to predict oral biofilm formation precisely in the future, for the first time, this study aimed to analyze Streptococcus gordonii biofilms by combining experimental studies and numerical simulation. The study demonstrated that numerical simulation was able to precisely model the influence of different nutrient concentration and spatial distribution of active and inactive biomass of the biofilm in comparison with the experimental data. This model may provide a less time-consuming method for the future investigation of any bacterial biofilm.
The osteonecrosis of the femoral head implies significant disability partly due to pain. After conventional core decompression using a 10-mm drill, patients normally are requested to be non-weight bearing for several weeks due to the risk of fracture. After core decompression using multiple small drillings, patients were allowed 50% weight bearing. The alternative of simultaneous implantation of a tantalum implant has the supposed advantage of unrestricted load bearing postoperatively. However, these recommendations are mainly based on clinical experience. The aim of this study was to perform a finite element analysis and confirm the results by clinical data after core decompression and after treatment using a tantalum implant. Postoperatively, the risk of fracture is lower after core decompression using multiple small drillings and after the implantation of a tantalum rod according to finite element analysis compared to core decompression of one 10-mm drill hole. According to the results of this study, a risk of fracture exists only during extreme loading. The long-term results reveal a superior performance for core decompression presumably due to the lack of complete bone ingrowth of the tantalum implant. In conclusion, core decompression using small drill holes seems to be superior compared to the tantalum implant and to conventional core decompression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.