Methicillin-resistant coagulase negative staphylococci (MR-CoNS) are the major cause of infectious diseases because of their potential ability to form biofilm and colonize the community or hospital environments. This study was designed to investigate the biofilm producing ability, and the presence of mecA, icaAD, bap and fnbA genes in MR-CoNS isolates. The MR-CoNS used in this study were isolated from various samples of community environment and five wards of hospital environments, using mannitol salt agar (MSA) supplemented with 4 μg/ml of oxacillin. The specie level of Staphylococcus haemolyticus, Staphylococcus epidermidis, Staphylococcus hominis and Staphylococcus warneri was identified by specific primers of groESL (S. haemolyticus), rdr (S. epidermidis) and nuc (S. hominis and S. warneri). The remainder isolates were identified by tuf gene sequencing. Biofilm production was determined using Congo red agar (CRA) and Microtiter plate (MTP) assay. The mecA and biofilm associated genes (icaAD, fnbA and bap) were detected using PCR method. From the 558 samples from community and hospital environments, 292 MR-CoNS were isolated (41 from community environments, and 251 from hospital environments). S. haemolyticus (41.1%) and S. epidermidis (30.1%) were the predominant species in this study. Biofilm production was detected in 265 (90.7%) isolates by CRA, and 260 (88.6%) isolates were detected by MTP assay. The staphylococci isolates derived from hospital environments were more associated with biofilm production than the community-derived isolates. Overall, the icaAD and bap genes were detected in 74 (29.5%) and 14 (5.6%) of all isolates from hospital environments. When tested by MTP, the icaAD gene from hospital environment isolates was associated with biofilm biomass. No association was found between bap gene and biofilm formation. The MR-CoNS isolates obtained from community environments did not harbor the icaAD and bap genes. Conversely, fnbA gene presented in MR-CoNS isolated from both community and hospital environments. The high prevalence of biofilm producing MR-CoNS strains demonstrated in this study indicates the persisting ability in environments, and is useful in developing prevention strategies countering the spread of MR-CoNS.
BackgroundMolecular analysis of carbapenem-resistant genes in Acinetobacter baumannii, an emerging pathogen, is less commonly reported from Nepal. In this study we determined the antibiotic susceptibility profile and genetic mechanism of carbapenem resistance in clinical isolates of A. baumannii. Methods A. baumannii were isolated from various clinical specimens and identified based on Gram staining, biochemical tests, and PCR amplification of organism specific 16S rRNA and bla OXA-51 genes. The antibiotic susceptibility testing was performed using disc diffusion and E-test method. Multiplex PCR assays were used to detect the following β-lactamase genes: four class D carbapenem hydrolyzing oxacillinases (bla OXA-51, bla OXA-23, bla OXA-24 and bla OXA-58). Uniplex PCRs were used to detect three class B metallo-β-lactamases genes (bla IMP, bla VIM and bla NDM-1), class C cephalosporin resistance genes (bla ADC), aminoglycoside resistance gene (aphA6), and ISAba1 of all isolates. Insertion sequence ISAba125 among NDM-1 positive strains was detected. Clonal relatedness of all isolates were analyzed using repetitive sequence-based PCR (rep-PCR).ResultsOf total 44 analyzed isolates, 97.7% (n = 43) were carbapenem-resistant A. baumannii (CR-AB) and 97.7% (n = 43) were multidrug resistant A. baumannii (MDR-AB). One isolate was detected to be extremely drug resistant A. baumannii (XDR-AB). All the isolates were fully susceptible to colistin (MICs < 2 μg/ml). The bla OXA-23 gene was detected in all isolates, while bla NDM-1 was detected in 6 isolates (13.6%). Insertion sequence, ISAba1 was detected in all of bla OXA-23 positive isolates. ISAba125 was detected in all bla NDM-1 positive strains. The bla ADC and aphA6 genes were detected in 90.1 and 40.1%, respectively. The rep-PCR of all isolates represented 7 different genotypes.ConclusionWe found high prevalence of CR-AB and MDR-AB with bla OXA-23 gene in a tertiary care hospital in Nepal. Systemic network surveillance should be established for monitoring and controlling the spread of these resistant strains.Electronic supplementary materialThe online version of this article (doi:10.1186/s13756-017-0180-5) contains supplementary material, which is available to authorized users.
Conjugation is a type of horizontal gene transfer (HGT) that serves as the primary mechanism responsible for accelerating the spread of antibiotic resistance genes in Gram-negative bacteria. The present study aimed to elucidate the mechanisms underlying the conjugation-mediated gene transfer from the extensively drug-resistant Acinetobacter baumannii (XDR-AB) and New Delhi Metallo-beta-lactamase-1-producing Acinetobacter baumannii (NDM-AB) to environmental isolates of Acinetobacter spp. Conjugation experiments demonstrated that resistance to ticarcillin and kanamycin could be transferred from four donors to two sodium azide-resistant A. baumannii strains, namely, NU013R and NU015R. No transconjugants were detected on Mueller-Hinton Agar (MHA) plates containing tetracycline. Plasmids obtained from donors as well as successful transconjugants were characterized by PCR-based replicon typing and S1-nuclease pulsed-field gel electrophoresis (S1-PFGE). Detection of antibiotic resistance genes and integrase genes (int) was performed using PCR. Results revealed that the donor AB364 strain can transfer the blaOXA-23 and blaPER-1 genes to both recipients in association with int1. A 240-kb plasmid was successfully transferred from the donor AB364 to recipients. In addition, the aphA6 and blaPER-1 genes were co-transferred with the int1 gene from the donor strains AB352 and AB405. The transfer of a 220-kb plasmid from the donors to recipient was detected. The GR6 plasmid containing the kanamycin resistance gene (aphA6) was successfully transferred from the donor strain AB140 to both recipient strains. However, the blaNDM-1 and tet(B) genes were not detected in all transconjugants. Our study is the first to demonstrate successful in vitro conjugation, which indicated that XDR-AB contained combination mechanisms of the co-transfer of antimicrobial resistance elements with integron cassettes or with the plasmid group GR6. Thus, conjugation could be responsible for the emergence of new types of antibiotic-resistant strains.
The multi-drug resistance of the opportunistic pathogen Acinetobacter baumannii is of growing concern, with many clinical isolates proving to be resistant to last resort as well as front line antibiotic treatments. The use of bacteriophages is an attractive alternative to controlling and treating this emerging nosocomial pathogen. In this study, we have investigated bacteriophages collected from hospital wastewater in Thailand and we have explored their activity against clinical isolates of A. baumannii. Bacteriophage vB_AbaM_PhT2 showed 28% host range against 150 multidrug resistant (MDR) isolates and whole genome sequencing did not detect any known virulence factors or antibiotic resistance genes. Purified vB_AbaM_PhT2 samples had endotoxin levels below those recommended for preclinical trials and were not shown to be directly cytotoxic to human cell lines in vitro. The treatment of human brain and bladder cell lines grown in the presence of A. baumannii with this bacteriophage released significantly less lactate dehydrogenase compared to samples with no bacteriophage treatment, indicating that vB_AbaM_PhT2 can protect from A. baumannii induced cellular damage. Our results have also indicated that there is synergy between this bacteriophage and the end line antibiotic colistin. We therefore propose bacteriophage vB_AbaM_PhT2 as a good candidate for future research and for its potential development into a surface antimicrobial for use in hospitals.
Acinetobacter baumannii is a major threat to public health due to the emergence and dissemination of antibiotic-resistant strains. The purpose of this study was to determine the molecular epidemiology of antibiotic-resistant A. baumannii isolates collected from four tertiary hospitals in Thailand during the period November 2013-February 2015. We screened 339 A. baumannii, nonrepetitive clinical isolates to determine drug susceptibility. Among all isolates, we found that 7.9% was nondrug-resistant A. baumannii (NR-AB). Carbapenem-resistant A. baumannii (CR-AB) strains accounted for 84.9% of the total isolates, with extensively drug-resistant A. baumannii (XDR-AB) accounting for 7.9% of the total isolates. We further investigated class D carbapenemase genes using multiplex-PCR amplification and class B metallo-β-lactamase genes, including bla, bla, and bla genes, using PCR and sequencing methods. We found that 300 (88.5%) isolates carried acquired class D carbapenemase genes, including bla (82.6%), bla (0.3%), and bla (6.5%). The genes bla and bla were not detected in any isolates. The bla was detected in 31 isolates from two hospitals (9.1%). All of the bla-positive A. baumannii (NDM-AB) had ISAba125 sequences upstream of the bla gene. A coexistence of three resistance genes-bla-bla-bla-was found in one isolate. A repetitive element palindromic-PCR (REP-PCR) revealed that all A. baumannii isolates were genetically diverse and could be divided into 33 genotypes. Only three genotypes were found to be predominant in all hospitals. Data from our study indicate the widespread emergence of multiple resistance determinants in A. baumannii isolates in Thailand, suggesting the need for more stringent infection control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.