Recently, improvement of hybrid and electric vehicle technologies, equipped with batteries, continues to solve energy and environmental problems. Lighter weight and crash safety are required in these vehicles body. In order to meet these requirements, three-dimensional hot bending and direct quench (3DQ) technology, which enables to form hollow tubular automotive parts with a tensile strength of 1470 MPa or over, has been developed. In addition, this technology enables to produce partially quenched automotive parts. In this study, the crash characteristics of 3DQ partially quenched products were investigated as the fundamental research of the design for improving the energy absorption. Main results are as follows: (1) for partially quenched straight products in axial crash test, buckling that occurs at nonquenched portion can be controlled; (2) for the nonquenched conventional and overall-quenched curved products, buckling occurs at the bent portion at the initial stage in axial crash tests, and its energy absorption is low; (3) by optimizing partially quench conditions, buckling occurrence can be controlled; and (4) In this study, the largest energy absorption was obtained from the partially quenched curved product, which was 84.6% larger than the energy absorption of the conventional nonquenched bent product in crash test.
To achieve both weight reduction and crash safety improvement in automobile bodies, we have developed ThreeDimensional Hot Bending and Direct Quench (3DQ) technology, the first in the world. In this paper, we describe the overview and the effect of 3DQ with robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.