Abstract-We consider the problem of routing in a mobile ad-hoc network (MANET) for which the planned mobilities of the nodes are partially known a priori and the nodes travel in groups. This situation arises commonly in military and emergency response scenarios. Optimal routes are computed using the most reliable path principle in which the negative logarithm of a node pair's adjacency probability is used as a link weight metric. This probability is estimated using the mobility plan as well as dynamic information captured by table exchanges, including a measure of the social tie strength between nodes. The latter information is useful when nodes deviate from their plans or when the plans are inaccurate. We compare the proposed routing algorithm with the commonly-used optimized link state routing (OLSR) protocol in ns-3 simulations. As the OLSR protocol does not exploit the mobility plans, it relies on link state determination which suffers with increasing mobility. Our simulations show considerably better throughput performance with the proposed approach as compared with OLSR at the expense of increased overhead. However, in the high-throughput regime, the proposed approach outperforms OLSR in terms of both throughput and overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.