Peptide nucleic acid (PNA) oligomers were conjugated to cell-penetrating peptides: pAnt, a 17-residue fragment of the Drosophila protein Antennapedia, and pTat, a 14-amino acid fragment of HIV protein Tat. A 14-mer PNA was attached to the peptide by disulfide linkage or by maleimide coupling. The uptake of (directly or indirectly, via biotin) fluorescein-labeled peptides, PNAs, or PNA-peptide conjugates was studied by fluorescence microscopy, confocal laser scanning microscopy, and fluorometry in five cell types. In SK-BR-3, HeLa, and IMR-90 cells, the PNA-peptide conjugates and a T1, backbone-modified PNA were readily taken up (2 microM). The PNA was almost exclusively confined to vesicular compartments in the cytosol. However, the IMR-90 cells also showed a weak diffuse staining of the cytoplasm. In the U937 cells, we observed a very weak and exclusively vesicular staining with the PNA-peptide conjugates and the T(lys)-modified PNA. No evident uptake of the unmodified PNA was seen. In H9 cells, both peptides and the PNA-peptide conjugates quickly associated with the membrane, followed by a weak intracellular staining. A cytotoxic effect resulting in artificial staining of the cells was observed with fluoresceinated peptides and PNA-peptide conjugates at concentrations above 5-10 microM, depending on cell type and incubation time. We conclude that uptake of PNAs in many cell types can be achieved either by conjugating to certain peptides or simply by charging the PNA backbone using lysine PNA units. The uptake is time, temperature, and concentration dependent and mainly endocytotic. Our results also show that proper controls for cytotoxicity should always be carried out to avoid misinterpretation of visual data.
Cell-penetrating peptides (CPPs) are characterized by their ability to be internalized in mammalian cells. To investigate the relative potency of CPPs as carriers of medicinally relevant cargo, a positive read-out assay based on the ability of a peptide nucleic acid (PNA) oligomer to promote correct expression of a recombinant luciferase gene was employed. Seven different CPPs were included in the study: Transportan, oligo-arginine (R7-9), pTat, Penetratin, KFF, SynB3, and NLS. The CPP-PNA conjugates were synthesized by different conjugation chemistries: continuous synthesis, maleimide coupling, and ester or disulfide linkage. Under serum-free conditions PNA-SS-Transportan-amide (ortho)-PNA was found to be the most potent conjugate, resulting in maximum luciferase signal at a concentration of 1-2 microM. (D-Arg)9-PNA showed optimal efficacy at 5 microM but gave rise to only one-third of the luciferase signal obtained with the Transportan conjugate. The pTat- and KFF-PNA conjugates showed significantly lower efficacy. The penetratin-, SynB3-. and NLS-PNA conjugates showed only minimal or no activity. Serum was found to have a drastic negative impact on CPP-driven cellular uptake. PNA-SS-Transportan-acid (ortho) and (D-Arg)9-PNA were least sensitive to the presence of serum. Both the chemical nature and, in the case of Transportan, the position of the peptide PNA coupling were found to have a major impact on the transport capacity of the peptides. However, no simple relationship between linker type and antisense activity of the conjugates could be deduced from the data.
Individuals who are heterozygous for the 32-base-pair deletion in the CKR-5 gene have a slower decrease in their CD4 T-cell count and a longer AIDS-free survival than individuals with the wild-type gene for up to 11 years of follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.