A new version of the RegCM regional climate modeling system, RegCM4, has been recently developed and made available for public use. Compared to previous versions, RegCM4 includes new land surface, planetary boundary layer, and air-sea flux schemes, a mixed convection and tropical band configuration, modifications to the pre-existing radiative transfer and boundary layer schemes, and a full upgrade of the model code towards improved flexibility, portability, and user friendliness. The model can be interactively coupled to a 1D lake model, a simplified aerosol scheme (including organic carbon, black carbon, SO 4 , dust, and sea spray), and a gas phase chemistry module (CBM-Z). After a general description of the model, a series of test experiments are presented over 4 domains prescribed under the CORDEX framework (Africa, South America, East Asia, and Europe) to provide illustrative examples of the model behavior and sensitivities under different climatic regimes. These experiments indicate that, overall, RegCM4 shows an improved performance in several respects compared to previous versions, although further testing by the user community is needed to fully explore its sensitivities and range of applications.
seasonal climatologies of the surface heat flux components are also consistent with the CORE.2 and NOCS datasets along with the overestimation in net long-wave radiation and latent heat flux (or evaporation, E), although a large observational uncertainty is found in these variables. Also, the coupled model tends to improve the latent heat flux by providing a better representation of the air-sea interaction as well as total heat flux budget over the sea. Both models are also able to reproduce the temporal evolution of the inter-annual anomaly of surface air temperature and precipitation (P) over defined sub-regions. The Mediterranean water budget (E, P and E-P) estimates also show that the coupled model has high skill in the representation of water budget of the Mediterranean Sea. To conclude, the coupled model reproduces climatological land surface fields and the sea surface variables in the range of observation uncertainty and allow studying air-sea interaction and main regional climate characteristics of the basin.
A modified Thornthwaite Climate Classification is applied to a 32-member ensemble of CMIP5 GCMs in order to 1) evaluate model performance in the historical climate and 2) assess projected climate change at the end of the 21 st century following two greenhouse gas representative concentration pathways (RCP4.5 and RCP8.5). This classification scheme differs from the well-known Köppen approach as it uses potential evapotranspiration for thermal conditions, a moisture index for moisture conditions, and has even intervals between climate classes. The multi-model ensemble (MME) reproduces the main spatial features of the global climate reasonably well, however, in many regions the climate types are too moist. Extreme climate types, such as those found in polar and desert regions, as well as the cool-and cold-wet types of eastern North America and the warm and cool-moist types found in the southern U.S., eastern South America, central Africa and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.