In the pursuit of reducing the fuel burn, future aircraft configurations will feature several types of improved propulsion systems, e.g. embedded engines with boundary layer ingestion, high-bypass ratio engines with short intakes, etc. Depending on the design and phase of flight, the engine fan will encounter inflow distortion of varying strength, and fan performance will be adversely affected. Therefore, investigation of the flow phenomena causing performance losses in fan and distortion interaction is important. This experimental study shows the effect of varying distortion index on four aspects of fan performance: distortion topology, upstream redistribution, performance curve, and flow unsteadiness. A low speed fan is tested under 60° circumferential distortion of varying strength, generated using distortion screens. The flow field in the upstream redistribution region is measured using PIV (planar and stereo). The fan performance is obtained using total pressure measurements. The noise spectra measured by a microphone are used to quantify the unsteadiness in the flow field. The distortion index (DC60) varies linearly with the grid porosity at constant wall thickness and aspect ratio of the grid cells. However, the distortion topology is significantly different as a stream-wise vortex pair appears in distorted flow at higher DC60. The vortices are stronger at higher DC60, but their order of magnitude is much lower than the circulation corresponding to fan itself. The spinner, distortion index and topology significantly affect the upstream redistribution mechanism. The vortex pair redistributes the flow which results in lower asymmetry in the symmetry plane. With increasing distortion, the performance is reduced and the unsteadiness is increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.