Greater and lesser spotted eagles (Aquila clanga, A. pomarina) are two closely related forest eagles overlapping in breeding range in east-central Europe. In recent years a number of mixed pairs have been observed, some of which fledged hybrid young. Here we use mitochondrial (control region) DNA sequences and AFLP markers to estimate genetic differentiation and possible gene flow between these species. In a sample of 83 individuals (61 pomarina, 20 clanga, 2 F1-hybrids) we found 30 mitochondrial haplotypes which, in a phylogenetic network, formed two distinct clusters differing on average by 3.0% sequence divergence. The two species were significantly differentiated both at the mitochondrial and nuclear (AFLP) genetic level. However, five individuals with pomarina phenotype possessed clanga-type mtDNA, suggesting occasional gene flow. Surprisingly, AFLP markers indicated that these ''mismatched'' birds (originating from Germany, E Poland and Latvia) were genetically intermediate between the samples of individuals in which mtDNA haplotype and phenotype agreed. This indicates that mismatched birds were either F1 or recent back-cross hybrids. Mitochondrial introgression was asymmetrical (no pomarina haplotype found in clanga so far), which may be due to assortative mating by size. Gene flow of nuclear markers was estimated to be about ten times stronger than for mtDNA, indicating a sex-bias in hybrid fertility in accordance with Haldane's rule. Hybridization between the two species may be more frequent and may occur much further west than hitherto assumed. This is supported by the recent discovery of a mixed pair producing at least one fledgling in NE Germany.
Hybridization is a significant threat for endangered species and could potentially even lead to their extinction. This concern applies to the globally vulnerable Greater Spotted Eagle Aquila clanga, a species that co-occurs, and potentially interbreeds, with the more common Lesser Spotted Eagle Aquila pomarina in a vast area of Eastern Europe. We applied single nucleotide polymorphism (SNP) and microsatellite markers in order to study hybridization and introgression in 14 European spotted eagle populations. We detected hybridization and/or introgression in all studied sympatric populations. In most regions, hybridization took place prevalently between A. pomarina males and A. clanga females, with introgression to the more common A. pomarina. However, such a pattern was not as obvious in regions where A. clanga is still numerous. In the course of 16 years of genetic monitoring of a mixed population in Estonia, we observed the abandonment of A. clanga breeding territories and the replacement of A. clanga pairs by A. pomarina, whereby on several occasions hybridization was an intermediate step before the disappearance of A. clanga. Although the total number of Estonian A. clanga ¥ A. pomarina pairs was twice as high as that of A. clanga pairs, the number of pairs recorded yearly were approximately equal, which suggests a higher turnover rate in interbreeding pairs. This study shows that interspecific introgressive hybridization occurs rather frequently in a hybrid zone at least 1700-km wide: it poses an additional threat for the vulnerable A. clanga, and may contribute to the extinction of its populations.
The ontogeny of migration routines used by wild birds remains unresolved. Here we investigated the migratory orientation of juvenile lesser spotted eagles (LSE; Clanga pomarina) based on translocation and satellite tracking. Between 2004 and 2016, 85 second-hatched juveniles (Abels) were reared in captivity for release into the declining German population, including 50 birds that were translocated 940 km from Latvia. In 2009, we tracked 12 translocated juveniles, as well as eight native juveniles and nine native adults, to determine how inexperienced birds come to use strategic migration routes. Native juveniles departed around the same time as the adults and six of eight used the eastern flyway around the Mediterranean, which was used by all adults. In contrast, translocated juveniles departed on average 6 days before native LSEs, and five travelled southward and died in the central Mediterranean region. Consequently, fewer translocated juveniles (4/12) than native juveniles (7/8) reached Africa. We conclude that juvenile LSEs have a much better chance of learning the strategic southeastern flyway if they leave at an appropriate time to connect with experienced elders upon departure. It is not clear why translocated juveniles departed so early. Regardless, by the end of the year, most juveniles had perished, whether they were translocated (10/12) or not (6/8). The small number of surviving translocated juveniles thus still represents a significant increase in the annual productivity of the German LSE population in 2009.
We assessed whether populations of the migratory, philopatric, territorial Lesser Spotted Eagle Clanga pomarina are regulated through territoriality and density‐dependent reproduction rates. In the north‐western part of the distribution to the east of the Baltic Sea, territories were spaced regularly and consistently between years. We did not find strong support for an improvement of reproductive output with an increase in distance to the nearest neighbour or with a decrease of the number of conspecifics within a 2‐km radius around nest‐sites. Eagles differed greatly in territory spacing across three studied geographical areas, but breeding performance did not follow the same pattern. Performance of birds at the northern limit of their distribution did not differ from that in an adjacent southern area. Moreover, breeding performance fluctuated synchronously across different geographical areas, perhaps indicating climatic spatial autocorrelation or trophic interactions with synchronous vole population fluctuations over large areas. Our data suggest population regulation through territoriality but do not identify density‐dependent breeding performance in this internationally protected raptor. Population density may be a good criterion for the selection of priority sites for conservation, but synchronous fluctuations in reproductive success over large geographical areas suggest that habitat conservation should similarly be focused at large scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.