Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting millions of people worldwide. At present, there is no effective cure for PD; treatments are symptomatic and do not halt progression of neurodegeneration. Extracellular vesicles (EVs) can cross the blood–brain barrier and represent promising alternative to the classical treatment strategies. In the present study, we examined therapeutic effects of intranasal administration of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on unilateral 6‐hydroxydopamine (6‐OHDA) medial forebrain bundle (MFB) rat model of PD. CatWalk gait tests revealed that EVs effectively suppressed 6‐OHDA‐induced gait impairments. All tested gait parameters (stand, stride length, step cycle, and duty cycle) were significantly improved in EV‐treated animals when compared with 6‐OHDA‐lesion group rats. Furthermore, EVs slowed down numbers of 6‐OHDA‐induced contralateral rotations in apomorphine test. Improvements in motor function correlated with normalization of tyrosine hydroxylase expression in the striatum and substantia nigra. In conclusion, we demonstrated, for the first time, the therapeutic efficacy of intranasal administration of EVs derived from SHEDs in a rat model of PD induced by 6‐OHDA intra‐MFB lesion. Our findings could be potentially exploited for the development of new treatment strategies against PD.
Functional impairments of microglia have been recently associated with several neurological conditions. Therefore, modulation of anti‐inflammatory and phagocytic properties of microglial cells could represent a novel therapeutic approach. In the present study, we investigated the effects of extracellular vesicles (EVs) derived from stem cells from the dental pulp of human exfoliated deciduous teeth (SHEDs) on the inflammatory response and functional properties of immortalized human microglial cells. NFκB reporter assays demonstrated that EVs suppressed LPS‐induced activation of NFκB signalling pathway in human microglial cells. The effect was similar to that obtained with anti‐TLR4 blocking antibody. We also show that EVs differentially affected phagocytic activity of unpolarized (M0) and polarized (M1 and M2) microglial cells. EVs induced significant upregulation of phagocytic activity in M0 cells (by 39%), slight decrease in M1 cells, and moderate increase (by 21%) in M2 cells. The Seahorse XF Glycolysis Stress Test revealed that EVs induced an immediate and sustained increase of glycolytic activity in M0, M1, and M2 cells. Interestingly, EVs acted in an inverse dose‐dependent manner. These findings indicate that EVs can induce glycolytic reprogramming of unpolarized and polarized human microglial cells. In conclusion, our pilot study demonstrates that EVs derived from SHEDs can act as a potent immunomodulators of human microglial cells. These findings could be potentially exploited for the development of new therapeutic strategies targeting neuroinflammatory microglia.
Extracellular vesicles (EVs) effectively suppress neuroinflammation and induce neuroprotective effects in different disease models. However, the mechanisms by which EVs regulate the neuroinflammatory response of microglia remains largely unexplored. Here, we addressed this issue by testing the action of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on immortalized human microglial cells. We found that EVs induced a rapid increase in intracellular Ca2+ and promoted significant ATP release in microglial cells after 20 min of treatment. Boyden chamber assays revealed that EVs promoted microglial migration by 20%. Pharmacological inhibition of different subtypes of purinergic receptors demonstrated that EVs activated microglial migration preferentially through the P2X4 receptor (P2X4R) pathway. Proximity ligation and co-immunoprecipitation assays revealed that EVs promote association between milk fat globule-epidermal growth factor-factor VIII (MFG-E8) and P2X4R proteins. Furthermore, pharmacological inhibition of αVβ3/αVβ5 integrin suppressed EV-induced cell migration and formation of lipid rafts in microglia. These results demonstrate that EVs promote microglial motility through P2X4R/MFG-E8-dependent mechanisms. Our findings provide novel insights into the molecular mechanisms through which EVs target human microglia that may be exploited for the development of new therapeutic strategies targeting disease-associated neuroinflammation.
Extracellular vesicles (EVs) effectively suppress neuroinflammation and induce neuroprotective effects in different disease models. However, the mechanisms by which EVs regulate neuroinflammatory response of microglia remain largely unexplored. Here, we addressed this issue by testing the action of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on immortalized human microglial cells. We found that EVs induced a rapid increase in intracellular Ca2+ and promoted a significant ATP release in microglial after 20 min of treatment. Boyden chamber assays revealed that EVs promoted microglial migration by 20 %. Pharmacological inhibition of different subtypes of purinergic receptors demonstrated that EVs activated microglial migration preferentially through the P2X4R pathway. Proximity ligation and co-immunoprecipitation assays revealed that EVs promote association between milk fat globule-epidermal growth factor-factor VIII (MFG-E8) and P2X4 receptor proteins. Furthermore, pharmacological inhibition of αVβ3/αVβ5 integrin suppressed EV -induced cell migration and formation of lipid rafts in microglia. These results demonstrate that EVs promote microglial motility through P2X4 R/ MFG-E8 – dependent mechanisms. Our findings provide novel insights into the molecular mechanisms through which EVs target human microglia that may be exploited for the development of new therapeutic strategies targeting disease associated neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.