A synthesis of vicinal diamines via in situ aminal formation and carboamination of allyl amines is reported. Employing highly electron-poor trifluoromethyl aldimines in their stable hemiaminal form was key to enable both a fast and complete aminal formation as well as the palladium-catalyzed carboamination step. The conditions developed allow the introduction of a wide variety of alkynyl, vinyl, aryl, and hetereoaryl groups with complete regioselectivity and high diastereoselectivity. The reaction exhibits a high functional-group tolerance. Importantly, either nitrogen atom of the imidazolidine products can be selectively deprotected, while removal of the aminal tether can be achieved in a single step under mild conditions to reveal the free diamine. We expect that this work will promote the further use of mixed aminal tethers in organic synthesis.
The selective palladium-catalyzed carboamination of allylic alcohols is reported on the basis of the use of an easily introduced trifluoroacetaldehyde-derived tether. Aminoalkynylation reactions were realized using alkynyl bromides and commercially available phosphine ligands. For aminoarylations, a new biaryl phosphine ligand, "Fu-XPhos", was introduced to overcome a competitive Heck pathway. The carboamination products were obtained in high yields and diastereoselectivity. The tether could be easily removed to give value-added amino alcohol building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.