Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on previous analyses by assessing the accuracy of seven prediction models for seven traits in three prediction scenarios: cross-validation within populations, cross-population prediction and cross-generation prediction. We also evaluated the impact of increasing the training population (TP) size by phenotyping progenies selected either at random or with a genetic algorithm. Cross-validation results were mostly consistent across programs, with nonadditive models predicting of 10% better on average. Cross-population accuracy was generally low (mean = 0.18) but prediction of cassava mosaic disease increased up to 57% in one Nigerian population when data from another related population were combined. Accuracy across generations was poorer than within-generation accuracy, as expected, but accuracy for dry matter content and mosaic disease severity should be sufficient for rapid-cycling GS. Selection of a prediction model made some difference across generations, but increasing TP size was more important. With a genetic algorithm, selection of one-third of progeny could achieve an accuracy equivalent to phenotyping all progeny. We are in the early stages of GS for this crop but the results are promising for some traits. General guidelines that are emerging are that TPs need to continue to grow but phenotyping can be done on a cleverly selected subset of individuals, reducing the overall phenotyping burden.
Portable Vis/NIRS are flexible tools for fast and unbiased analyses of constituents with minimal sample preparation. This study developed calibration models for dry matter content (DMC) and carotenoids in fresh cassava roots using a portable Vis/NIRS system. We examined the effects of eight data pre-treatment combinations on calibration models and assessed calibrations on processed and intact root samples. We compared Vis/NIRS derived-DMC to other phenotyping methods. The results of the study showed that the combination of standard normal variate and de-trend (SNVD) with first derivative calculated on two data points and no smoothing (SNVD+1111) was adequate for a robust model. Calibration performance was higher with processed than the intact root samples for all the traits although intact root models for some traits especially total carotenoid content (TCC) (R2c = 96%, R2cv = 90%, RPD = 3.6 and SECV = 0.63) were sufficient for screening purposes. Using three key quality traits as templates, we developed models with processed fresh root samples. Robust calibrations were established for DMC (R2c = 99%, R2cv = 95%, RPD = 4.5 and SECV = 0.9), TCC (R2c = 99%, R2cv = 91%, RPD = 3.5 and SECV = 2.1) and all Trans β-carotene (ATBC) (R2c = 98%, R2cv = 91%, RPD = 3.5 and SECV = 1.6). Coefficient of determination on independent validation set (R2p) for these traits were also satisfactory for ATBC (91%), TCC (88%) and DMC (80%). Compared to other methods, Vis/NIRS-derived DMC from both intact and processed roots had very high correlation (>0.95) with the ideal oven-drying than from specific gravity method (0.49). There was equally a high correlation (0.94) between the intact and processed Vis/NIRS DMC. Therefore, the portable Vis/NIRS could be employed for the rapid analyses of DMC and quantification of carotenoids in cassava for nutritional and breeding purposes.
Random forests (RF) was used to correlate spectral responses to known wet chemistry carotenoid concentrations including total carotenoid content (TCC), all-trans β-carotene (ATBC), violaxanthin (VIO), lutein (LUT), 15-cis beta-carotene (15CBC), 13-cis beta-carotene (13CBC), alpha-carotene (AC), 9-cis beta-carotene (9CBC), and phytoene (PHY) from laboratory analysis of 173 cassava root samples in Columbia. The cross-validated correlations between the actual and estimated carotenoid values using RF ranged from 0.62 in PHY to 0.97 in ATBC. The developed models were used to evaluate the carotenoids of 594 cassava clones with spectral information collected across three locations in a national breeding program (NRCRI, Umudike), Nigeria. Both populations contained cassava clones characterized as white and yellow. The NRCRI evaluated phenotypes were used to assess the genetic correlations, conduct genome-wide association studies (GWAS), and genomic predictions. Estimates of genetic correlation showed various levels of the relationship among the carotenoids. The associations between TCC and the individual carotenoids were all significant (P < 0.001) with high positive values (r > 0.75, except in LUT and PHY where r < 0.3). The GWAS revealed significant genomic regions on chromosomes 1, 2, 4, 13, 14, and 15 associated with variation in at least one of the carotenoids. One of the identified candidate genes, phytoene synthase (PSY) has been widely reported for variation in TCC in cassava. On average, genomic prediction accuracies from the single-trait genomic best linear unbiased prediction (GBLUP) and RF as well as from a multiple-trait GBLUP model ranged from ∼0.2 in LUT and PHY to 0.52 in TCC. The multiple-trait GBLUP model gave slightly higher accuracies than the single trait GBLUP and RF models. This study is one of the initial attempts in understanding the genetic basis of individual carotenoids and demonstrates the usefulness of NIRS in cassava improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.