Methacrylate analogs of quaternary ammonium salts functionalized with carboxylic (AMadh1 68.8% yield, AMadh2 53.2% yield) and methoxysilane (AMsil1 94.8% yield, AMsil2 36.0% yield) groups were synthesized via Menschutkin reaction. Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H, 13C and 2D 1H-13C heteronuclear single quantum coherence (HSQC) NMR), mass spectrometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were utilized to validate structures and characterize thermal properties of the novel multifunctional quaternary ammonium salts synthesized. The potential adhesive, coupling and antimicrobial properties of these multifunctional monomers encourage their further comprehensive evaluation in conventional and experimental copolymers and composites.
A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N′-([1,1′-biphenyl]-2,2′-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide (IDMA2), intended for utilization in bi-functional antimicrobial and remineralizing composites, were synthesized, purified with an ethanol-diethyl ether-hexane solvent system, and validated by nuclear magnetic resonance (1H and 13C NMR) spectroscopy, mass spectrometry, and Fourier-transform infrared spectroscopy. When incorporated into light-curable urethane dimethacrylate (UDMA)/polyethylene glycol-extended UDMA (PEG-U)/ethyl 2-(hydroxymethyl)acrylate (EHMA) (assigned UPE) resins, IDMAs did not affect the overall resins’ hydrophilicity/hydrophobicity balance (water contact angle: 60.8–65.5°). The attained degrees of vinyl conversion (DVC) were consistently higher in both IDMA-containing copolymers and their amorphous calcium phosphate (ACP) composites (up to 5% and 20%, respectively) reaching 92.5% in IDMA2 formulations. Notably, these high DVCs values were attained without an excessive increase in polymerization stress. The observed reduction in biaxial flexure strength of UPE-IDMA ACP composites should not prevent further evaluation of these materials as multifunctional Class V restoratives. In direct contact with human gingival fibroblasts, at biologically relevant concentrations, IDMAs did not adversely affect cell viability or their metabolic activity. Ion release from the composites was indicative of their strong remineralization potential. The above, early-phase biocompatibility and physicochemical tests justify further evaluation of these experimental materials to identify formulation(s) suitable for clinical testing. Successful completion is expected to yield a new class of restoratives with well-controlled bio-function, which will physicochemically, mechanically, and biologically outperform the conventional Class V restoratives.
For the advancement of Class V restoratives, our goal was to evaluate the physicochemical and mechanical properties, antimicrobial functionality, and cytotoxic potential of novel antimicrobial copolymers. 5-Carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylpentan-1-aminium bromide (AMadh1) and 10-carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyldecan-1-aminium bromide (AMadh2) were incorporated into light-curable urethane dimethacrylate, polyethylene glycol–extended urethane dimethacrylate, ethyl 2-(hydroxymethyl) acrylate resin (UPE resin). In the AMadhs-UPE resin, the hydrophobic/hydrophilic balance, degree of vinyl conversion, flexural strength, elastic modulus, and shear bond strength were assessed. Antimicrobial properties were measured using Streptococcus mutans (planktonic and biofilm). Cytotoxicity was tested using human gingival fibroblasts and mouse connective tissue fibroblasts (ATCC® CCL-1™) exposed to two-fold serial dilutions (≤10.6 mmol/L AMadh1 or ≤8.8 mmol/L AMadh2). At 10% mass of AMadh, the attained degree of vinyl conversion values (AMadh1 = 90.1% and AMadh2 = 88.5%) were not statistically different from the UPE resin (88.1%). At both AMadh levels, the flexural strength was reduced in a dose-dependent manner. Elastic modulus and contact angle were not significantly affected by AMadh1. Variations in elastic modulus and contact angle were observed with AMadh2; however, this does not disqualify it in future design of Class V restoratives. Compared to UPE resin, AMadh1-UPE and AMadh2-UPE (10% mass) copolymers reduced S. mutans biofilm 4.2- and 1.6-fold, respectively (p ≤ 0.006). In direct contact with human gingival fibroblasts or ATCC CCL-1 cells, at biologically relevant concentrations, the AMadhs did not adversely affect cell viability or their metabolic activity. This effort addresses a significant oral health issue associated with elderly populations. Its successful completion is expected to yield dental restoratives with well-controlled biofunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.